Как рассчитать количество свай для фундамента

Особенности расчета количества свай

Схема свайного фундамента из сборных винтовых свай.

Учитывая тот факт, что винтовые сваи располагаются на расстоянии 2-3 м друг от друга, существует вероятность того, что дом может со временем неравномерно осесть. Для того чтобы избежать подобных проблем, при нужно учитывать возможные дополнительные нагрузки на фундамент со стороны здания.

Если в местности строительства преобладают сильные ветры одного направления, то к нагрузке нужно прибавлять минимум 20%. Как показывает практика, в большинстве случаев прибавляется не 20%, а 30-35%, чтобы перекрыть все возможные неточности при . Многие нагрузки не проявляют себя после окончания строительства, потому лучше перестраховаться.

При расчете нагрузок от здания на свайно-винтовой фундамент необходимо учитывать и внутренние несущие стены. Оптимальным вариантом будет более частое размещение опор на таких участках. Если же стена не несущая, то сваи можно расположить на большем расстоянии друг от друга.

При наличии на участке строительства слабых подстилающих грунтов лучше всего использовать деревянные перекрытия, которые имеют меньший вес. Стены и крыша дома в таких условиях тоже должны быть максимально легкими.

Стоить принимать во внимание тот факт, что при общей экономии средств на возведение винтового основания дома не стоит экономить на количестве и качестве винтовых опор, так как от них зависит надежность и долговечность не только фундамента, но и всего сооружения. https://www.youtube.com/embed/FFP0-jiEdOk

https://youtube.com/watch?v=FFP0-jiEdOk

https://youtube.com/watch?v=FFP0-jiEdOk

Пример расчета свайного фундамента

Для расчета количества свай нужно учесть их диаметр, несущую способность и длину.

В качестве примера расчета, сколько же нужно свай для возведения качественного основания, приведем расчет их количества для деревянного дома из бруса, возводимого в Новосибирской области.

По проектной документации стены возводимого здания должны быть сложены из бруса сечением 150х150 мм. Периметр дома составляет 20 м (сруб 4х6 м), высота стен – 3,5 м. Предполагается наличие 4-х стен, двух внутренних перегородок по 4 м из того же бруса, пола и потолка с крышей, а также мебели и печи. Удельный вес деревянного бруса составляет 600 кг/м3. Для возведения стен нужно 0,15х3,5х(6+4+4+4)=9,45 м3 древесины. Учитывая внутреннюю нагрузку, равную 100 кг на 1 м2 дома, получаем общий вес, равный 9,45х600+24х100=8070 кг.

Снеговое давление на проектируемый дом составляет 24х180=4320 кг, где 180 кг/м2 – это норма нагрузки для Новосибирска и Новосибирской области.

Ветровая нагрузка подсчитывается перемножением площади дома на сумму (40+15h), где h – это высота стен. В нашем случае влияние ветра равно 24х(40+15х3,5)=2220 кг.

Надо принимать во внимание также динамическую нагрузку здания, которая составляет 350 кг/м2 площади сооружения. Для проектируемого здания динамическая нагрузка составляет 24х350=8400 кг

Общее давление здания на грунт составляет 8070+4320+2220+8400=23010 кг.

Оптимальным количеством опор для дома 4х6 м из бруса сечением 150х150 мм является 12 свай, четыре из которых ставятся по углам здания, по две – под длинные стены здания, по одной – под короткие стены и две сваи – для поддержки внутренних перегородок. Соответственно, зная и нагрузку на фундамент, получаем минимальную несущую способность каждой сваи, равную 23010/12=1917,5 кг.

От чего зависит интервал?

От расположения конструктивных элементов в свайном поле зависит равномерность распределения нагрузок.

Факторы, от которых будет зависеть интервал между сваями:

  1. Тип грунта и его физико-химические свойства.
  2. Глубина промерзания.
  3. Уровень подземных источников.
  4. Вес дома и особенности его конструкции.
  5. Несущая способность выбранных свай.

Шаг между опорами не всегда выбирается одинаковым. Составленный во всех деталях план дома позволяет определить точки, в которых нагрузка на основание будет максимальной.

Так, винтовые сваи в обязательном порядке вкручивают в следующих местах:

  • под углами сооружения;
  • по линиям несущих стен;
  • под печами и каминами;
  • у входной части;
  • под тяжелым оборудованием и т.д.

С учетом всех параметров выбирают рациональное соотношение между шагом и характеристиками силовых элементов:

  • диаметром опоры,
  • толщиной металла,
  • шириной лопастей,
  • длиной трубы.

Пример расчета несущей способности свайного отдельно стоящего фундамента

Рассчитать свайный фундамент под колонну про­мышленного здания на действие центральной нагрузки N = 1,0 МН. Материал ростверка — бетон класса В25 с расчетным сопротивлени­ем осевому растяжению Rbt= 1,05 МПа. Глубина заложения подош­вы ростверка по конструктивным соображениям принята равной h = 0,8 м. Грунтовые условия стро­ительной площадки: 1 — песок пылеватый (γ1= 0,0185 МН/м 3 , h1 = 3,6 м, E1 = 15 МПа); 2 — супесь пластичная (γ2= 0,0195 МН/м 3 , h2 = 1,7 м; Е2=17 МПа); 3 — песок плотный (γ3=0,0101 МН/м 3 , h3 = 2,2 м, E3 = 32 МПа); 4 — суглинок тугопластичный (γ4 =0.01 МН/м 3 , h4=3,4 м, E4=30 МПа). L/H—5,1.

Решение. Для заданных грунтовых условий проектируем свайный фундамент из сборных железобетонных свай марки С5,5-30, длиной L = 5,5 м, размером поперечного сечения 0,3×0,3 м и длиной острия l = 0,25 м. Сваи погружают с помощью забивки дизель-мо­лотом.

Найдем несущую способность одиночной висячей сваи, ориенти­руясь на расчетную схему, показанную на рис. 6.1, а и имея в ви­ду, что глубина заделки сваи в ростверк должна быть не менее 5 см.

Рис. VI.1

Площадь поперечного сечения сваи A = 0,3·0,3 = 0,09 м 2 , периметр сваи

По табл. 1.18(Приложение I) при глубине погружения сваи 6,5 м для песка мелкого, интерполируя, найдем расчетное сопротивление грунта под нижним концом сваи R = 2,35МПа.

По табл. 1.18(Приложение I) для свай, погружаемых с помощью дизель-моло­тов, находим значение коэффициента условий работы грунта под нижним концом сваи γcR =1,0 и по боковой поверхности γcf =1,0.

Пласт первого слоя грунта, пронизываемого сваей, делим на два слоя толщиной 2 и 0,8 м. Затем для песка пылеватого при сред­них глубинах расположения слоев h1 = l,8 м и h2 = 3,2 м, интерполи­руя, находим расчетные сопротивления по боковой поверхности сваи, используя данные табл. 1.19(Приложение I): f1= 0,0198 МПа, f2 = 0,0254 МПа.

Для третьего слоя грунта при средней глубине его залегания h3 = 4,45 м по этой же таблице для супеси пластичной с показате­лем текучести IL = 0,6, интерполируя, находим f3 = 0,0165 МПа.

Для четвертого слоя при средней глубине его расположения h4= 5,775 м для песка мелкого находим f4 = 0,041б МПа.

Несущую способность одиночной висячей сваи определим по формуле (6.4)

Ф= 1 =0,364 МН.

Расчетная нагрузка, допускаемая на сваю по грунту, составит:

F = 0,364/1,4 = 0,26 МН.

В соответствии с конструктивными требованиями зададимся шагом свай, приняв его равным а = 3b = 3·0,3 = 0,9 м. Далее определим требуемое число свай:

Окончательно примем число свай в фундаменте равным 4 и разместим их по углам ростверка.

Найдем толщину ростверка из условия (8.8):

По конструктивным требованиям высота ростверка должна быть не менее hp= 0,05+ 0,25 = 0,3 м, что больше полученной в результа­те расчета на продавливание. Следовательно, окончательно примем высоту ростверка равной 0,3 м.

Расстояние от края ростверка до внешней стороны сваи в соот­ветствии с конструктивными требованиями назначим равным lр = = 0,3·30+5=14 см, примем его окончательно, кратным 5 см, т. е. lp= 15 см. Расстояние между сваями примем равным: l=3b = 0,9 м.

Конструкция ростверка и его основные размеры показаны на рис. VI.1, б.

Найдем вес ростверка G3 = 0,025·0,3·1,5·1,5 = 0,0169 МН и вес грунта, расположенного на ростверке, Gгр = 0,5·1,5·1,5 ·0,0185 = 0,0208 МН.

Определим нагрузку, приходящуюся на одну сваю, по формуле:

Найдем вес свай:

G1= 4 (5,5·220·10 + 50·10) = 50800 H = 0,0508 МН.

Вес грунта в объеме АБВГ (см. рис. 6.1):

Вес ростверка был найден ранее: G3=0,0169 МН.

Давление под подошвой условного фундамента:

По табл. 1.12(Приложение I) для песка мелкого, на который опирается условный фундамент, с коэффициентом пористости е = 0,598 найдем значение удельного сцепления сп = 0,003 МПа.

По табл. 1.13(Приложение I) по углу внутреннего трения φn = 34°, который был определен ранее, найдем значение безразмерных коэффициентов: Mγ=l,55, Mq=7,22 и Мс=9,22.

Определим осредненный удельный вес грун­тов, залегающих выше подошвы условного фундамента:

По табл. 1.15. (ПриложениеI) для песка мелкого, насыщенного водой, при соот­ношении L/H>4 находим значения коэффициентов γс1 = 1,3 и γс2= 1,1.

По формуле (8.3) определим расчетное сопротивление грунта основания под подошвой условного фундамента:

Основное условие при расчете свайного фундамента по второй группе предельных состояний удовлетворяется: Рср = 0,276 МПа

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10546 – | 7960 – или читать все.

93.79.246.243 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)очень нужно

5.1 Расчёт ленточного свайного фундамента

Определим
длину сваи:

lсв=l+∑lгр+lн.сл=0,1+2+6+0,5=8,6
м
(10)

Принимаем
сваю С 9-30.

Рисунок
4 – Расчетная схема к определению
несущей способности сваи под наружную
стену.

По
таблице СНиП подбираем R
при глубине погружения свай 11,8м- R=5190
кПа

При
погружении свай забивкой молотом

Несущую
способность сваи определяется по формуле
(11) как сумма расчётных сопротивлений
грунтов оснований под нижним концом
сваи и на её боковой поверхности:

(11)

где-коэффициент
условий работы сваи в грунте, принимаемый=1

R-расчётное
сопротивление грунта под нижним концом
сваи, кПа.

А
– площадь опирания на грунт сваи, м.

u
– наружный периметр поперечного сечения
сваи, м.

fi
– расчётное сопротивление итого слоя
грунта основания на боковой поверхности
сваи, кПа.

hi
– толщина итого слоя грунта соприкасающегося
с боковой поверхностью сваи, м.

-коэффициенты
условий работы грунта соответственно
под нижним концом и на боковой поверхности
сваи, учитывающие влияние способа
погружения сваи на расчётные сопротивления
грунта и принимаемые по таблице А2 .

Первый
слой- песок рыхлый, поэтому начинаем со
второго слоя.

-суглинок
текучепластичный J=0.79:

при
z1=5,9
м, суглинок текучепластичный

при
z2=7,9
м, суглинок текучепластичный

при
z3=9,9
м, суглинок текучепластичный

-песок
средней крупности

при
z4=11.35
м,

Несущая
способность свай под колону :

Расчётная
нагрузка, допускаемая на одну сваю:

(12)

где
– коэффициент надежности, принимаемый
1,4.

Определение несущей способности сваи по грунту Fd и расчетной нагрузки Рсв на одну сваю

Fd – определяется по формуле

Fd = γc(γCRRA+u∑γcffihi) , где

γc = 1 – коэффициент условий работы
сваи в грунте

R =
2319 кПа- расчетное сопротивление грунта под нижним концом сваи;

А = 0,352 = 0,123м2 – площадь поперечного сечения сваи;

u =
1,4 м – наружный периметр поперечного сечения сваи;

γCR = γcf = 1 – коэффициенты условий работы
грунта соответственно под нижним концом и на боковой поверхности сваи;

hi –
толщина i-го слоя грунта основания,
соприкасающегося с боковой поверхностью сваи;

fi –
расчетное сопротивление i-го
слоя грунта основания, на боковой поверхности сваи.

Fd =
1·(1·2319·0,123 + 1,4(1·45·1,1 + 1·9,2·12,7+ 1·46·0,1) = 395,6 кН.

Расчетная допустимая нагрузка на сваю определяется по формуле:

Рсв = Fd/γк,

где: γк = 1,4 (если Fd
определяется расчетом) – коэффициент надежности.

Рсв =395,6/1,4 = 282,68 кН.

Сбор нагрузок свайного фундамента

Для определения нагрузки рассчитывают вес строительных материалов

При расчете свайно-винтового фундамента требуется найти сумму воздействующих на него нагрузок в единицах массы (для крупных зданий это тонны). Их можно разделить на константные и временные. В последнюю категорию входят:

  • Длительные – стационарное оборудование с его наполнением, временные ограждения.
  • Кратковременные – факторы климата (снег и т.д.), передвижное оборудование, транспорт, воздействия живых существ.
  • Специфические – действие пожаров, взрывов, повреждений фундамента (влияющие на внутреннее строение грунта), сейсмического фактора. Их значение может быть отрицательным.

Подсчет общей нагрузки на фундамент реализуется посредством простого суммирования значений нагрузок по всем приведенным категориям. Чтобы узнать сумму константных воздействий, нужно определить удельный вес затрачиваемых на строительные работы материалов. Требуемую информацию может предоставить их поставщик. Зная материал, его толщину и тип конструкции, можно воспользоваться табличным значением параметра. Наибольший удельный вес на каждый квадратный метр имеет железобетон. Это относится к стеновым конструкциям и к перекрытиям. Обязательно учитывается вес кровли.

Когда расчет свай и фундамента производится собственноручно, нужно брать во внимание, что показатель нагрузки определяется как нормативный параметр, перемноженный на коэффициент надежности γf. Последнее значение зависит от материала конструкции и его плотности и обычно находится в границах 1,05-1,3. К примеру, периметр P внутренних и внешних стен деревянного дома равен 50 м, высота h – 5 м, а удельный показатель сырья – 70 кг/м2

Тогда нагрузка будет рассчитываться по формуле P*h*удельный вес=50 м*5 м*70 кг/м² = 17500 кг = 17,5 т. Аналогичные показатели вычисляют для крыши и перекрытий. В первом случае удельный вес материала умножают на площадь. Во втором добавляют еще один множитель – количество перекрывающих элементов. Эти три значения – для каркасных конструкций, крыши и перекрытий – суммируют. Результат, перемноженный на коэффициент надежности (для постройки из дерева он равен 1,1), будет являть собой значение константной нагрузки

К примеру, периметр P внутренних и внешних стен деревянного дома равен 50 м, высота h – 5 м, а удельный показатель сырья – 70 кг/м2. Тогда нагрузка будет рассчитываться по формуле P*h*удельный вес=50 м*5 м*70 кг/м² = 17500 кг = 17,5 т. Аналогичные показатели вычисляют для крыши и перекрытий. В первом случае удельный вес материала умножают на площадь. Во втором добавляют еще один множитель – количество перекрывающих элементов. Эти три значения – для каркасных конструкций, крыши и перекрытий – суммируют. Результат, перемноженный на коэффициент надежности (для постройки из дерева он равен 1,1), будет являть собой значение константной нагрузки.

Примерная нагрузка на квадратный метр составляет 150 кг

Поскольку на стадии проектирования нельзя точно узнать общую массу мебели, техники и живых существ, воздействующих на перекрытия, для расчетов используют принятый в нормативах показатель равномерно распределенной нагрузки на квадратный метр (Pt). В жилищах его значение считают равным 150 кг/м². Формула расчета имеет такой вид: S*Pt*n, где n – число использованных перекрытий.

Также при строительстве учитывается снеговая нагрузка на здание, свойственная данному региону. В центральной части ЕТР расчетный показатель считают равным 180 кгс/м². В ряде мест это число значительно выше – в некоторых сибирских регионах оно может достигать 400 кгс/м². Узнать искомое значение можно по карте снеговых районов. Формула для нагрузки состоит из трех множителей: площади крыши, расчетного показателя и коэффициента наклона. Последний параметр для самых типичных покрытий с наклоном в 30-45 градусов считают равным 0,7.

Ветровой нагрузочный показатель часто выражается отрицательным числом (что означает снижение общей массы). Из-за этого при постройке массивных сооружений им часто пренебрегают. Для небольших парусных конструкций, напротив, он очень важен, так как при их возведении нужно представлять влияние на сваи выдергивающих и иных действий. Определяют ветровое давление по формуле: W=0,7* k(z)*c*g, где k(z) – коэффициент для высоты z (находится по таблице для типов местности), с – аэродинамический показатель (зависит от наклона крыши и от того, куда чаще дует ветер – во фронтон или в скат), g – коэффициент надежности, равный 1,4. Чтобы рассчитать общую нагрузку на кровлю, получившееся число W умножают на площадь крыши.

Пример расчета фундамента на винтовых сваях

В большинстве случаев расчет свайного основания (в том числе и винтового типа) ведется на специальных программных продукта – так называемых «калькуляторах фундамента». Но всю последовательность вычислений, проводимых таким «калькулятором» можно произвести и вручную.

И далее по тексту мы изложим именно «ручную» методику расчетов. Причем все вычисления будут изложены именно в том прядке, который был описан при изложении типовой методики расчетов свайного основания. Итак..

Определение характеристик почвы

Как говорилось выше, все характеристики почвы определяют в ходе инженерно-геологических изысканий. Однако для сооружения небольших фундаментов под относительно легкие строения можно воспользоваться и усредненными, табличными данными, увязав несущую способность грунта с типом почвы.

Правда, в этом случае вам придется отрыть шурф, обнажающий слой грунта на глубине погружения сваи. Причем в качестве шурфа можно использовать котлован для септика.

Сбор нагрузок

Сбор нагрузок предполагает  расчет по массе стройматериалов, эксплуатационной, снеговой и ветровой нагрузкам.

Масса строения 6х4 метра определяется по объему и удельному весу стройматериалов. В среднем на такой дом расходуют около 12 кубов бруса на несущие стены и еще 3-4 куба на обустройство кровли, цокольного и чердачного перекрытия. При удельной массе дерева в 550-600 кг/м3 такой объем пиломатериалов «потянет» на 9-10 тонн.

Эксплуатационная нагрузка считается исходя из площади строения, умноженной на усредненный вес оборудования, мебели и жильцов. И при значении среднего веса в 350 кг/м2 эксплуатационная нагрузка равняется 8,4 тонны (6х4х350).

Ветровая нагрузка определяется по площади пола умноженной на коэффициент (40+15Н), где Н – это высота фасада дома. При высоте фасада в 3,5 метра, ветровая нагрузка равна 2,2 тонны (6х4 х (40+15х3,5)).

Снеговая нагрузка вычисляется по площади кровли, умноженной на коэффициент среднего веса снежного покрова (180 кг/м2 для жилищ, расположенных в средних широтах).  И при высоте фронтона в 2 метра площадь двускатной кровли нашего дома равна 34 м2. В итоге, снеговая нагрузка равняется 6,1 тонны (34х180).

Таким образом, сбор нагрузок предполагает, что на грунт и основание будут давить не менее 26,7 тонн общего веса строения.

Расчет параметров свай

Перед тем, как рассчитать количество винтовых свай для фундамента и определить шаг расположения опор, следует вычислить несущую способность одной сваи. Для этого нужно умножить на площадь пяты (винтовой лопасти) опоры несущую способность грунта.

Площадь пяты выбирается по специальной таблице, в которой указан диаметр всех нормированных (производимых по ГОСТ) винтовых свай. Наименьший диаметр такой сваи равен 300 миллиметрам. Следовательно, площадь пяты опоры равняется 706 см2.

А при несущей способности грунта в 3-4 кг/см2 несущая способность сваи будет равна 2,1-2,8 тонны.

Таким образом, для удержания нагрузки в 26,7 тонны достаточно 10-12 свай. Габариты опор берутся по общим рекомендациям. Например, для деревянных конструкций в большинстве случаев советуют опору СВ108 с диаметром стержня в 108 миллиметров.

Свайное поле считают исходя из жесткости балок ростверка. И если под нашим домом заложат металлический или деревянный ростверк то максимальный шаг (расстояние между двумя соседними опорами) будет равен 2-2,5 метрам. Причем формируя свайное поле нужно заложить опоры еще и под межкомнатную перегородку.

https://youtube.com/watch?v=6kJPnSH1oAs

О сайте

zalman

Пример подсчёта потребности в сваях

Для примера расчёта возьмём одноэтажный дачный дом:

с крышей из металлочерепицы;стены бревенчатые;перекрытия деревянные;размер 6 Х 6 м;без фундаментальной печи;высота стен 2,4 м.

Расчет:

вес стен из бревна: 2,4 (высота) Х  24 (периметр) Х 600 =  34560;вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;вес крыши: 54 (площадь) * 20 = 1080;полезная нагрузка: 100 Х 36 = 3600.

Сборный вес дома: 34560+7200+1080+3600=46440 кг.

Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кг\м2. Отсюда расчет равен: 6х6х190=6840 кг.

Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.

Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук  винтовых свай.

Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.

Минимальное и максимальное значение

Наименьшее значение шага зависит от толщины почвы, которая уплотняется лопастями вокруг сваи в процессе ее вкручивания.

Исключение составляют такие случаи:

  1. Технология монтажа винтовых свай предполагает монтаж опорных элементов под углом. Тогда минимальный шаг будет равен 1,5Ø.
  2. На участках с большим уклоном расстояние принимается минимально возможным.
  3. При строительстве на достаточно плотных и стабильных грунтах промежуток между опорами может быть равен восьми диаметрам. Этот же диапазон подходит для строительства легких построек, которые будут эксплуатироваться по минимуму.
  4. На площадках с высоким содержанием песка оптимальным считается шаг, равный четырем диаметрам. Расстояние уменьшают, если грунт чрезмерно уплотнен.

Определение необходимого числа свай п в свайном фундаменте, размещение их в плане, определение ширины bp и высоты hp ростверка.

Необходимое число свай n на
один погонный метр длины ленточного фундамента определяем по формуле:

d2 –
осредненная грузовая площадь вокруг сваи, с которой передается нагрузка от
собственного веса ростверка, надростверковой конструкции и грунтовой пригрузки
на ростверке.

d = 0,35м
– сторона сваи;

h = 3,2 м –
высота ростверка и надростверковой конструкции, нагрузка от которых не вошла в
расчет при определении ;

γср = 20 кН/м3 – средний удельный вес грунта и бетона над подошвой
ростверка.

Определение
расстояния а между осями свай:

Сваи в составе фундамента должны размещаться на расстоянии, равном (3… 6)
d между их осями. Очевидно, что наиболее экономичным был бы ростверк с
однорядным расположением свай при расстоянии а между их осями, равном 3d=0,9 м.
Но, так как полученное значение а=0,45 м < 0,9 м, приходится принимать
двухрядное расположение свай, с тем, чтобы расстояние между соседними сваями
одного и другого рядов составляло 3d=0,9 м, а по длине ростверка 0,45 м. При
этом расстояние СР между рядами свай определяется из треугольника abc

Расстояние от внешней грани вертикально нагруженной сваи до края

ростверка принимается равным 0,2d + 5 см при двух рядном (d – в см), но
не менее 10 см. Исходя из этого, получаем ширину ростверка

,2d + 5см = 0,2·35 + 5 =
12см.=1,01+2·0,15+2*0,12=1,55 м.

Ширина стены подвала составляет 40 см поэтому окончательно принимается
ширина ростверка1,6м, высота 0,5 м.

Высота ростверка ленточного фундамента должна определяться из условия
продавливания его сваей. Но т.к. свая полностью расположена под стеной подвала,
то продавливание ростверка сваей исключается. Поэтому из конструктивных
соображений и практики строительства оставляем hр = 0,5м.

Полученные размеры ростверка составляют: ширина 1,6 м, высота 0,5 м.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий