Сравнение теплопроводности различных утеплителей

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1

Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу

Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины

Таблица проводимости тепла воздушных прослоек

Ассортимент современных утеплителей

Теплоизоляционная продукция отличается универсальностью и внушительным выбором. На вопрос, чем лучше утеплить стены, трудно дать однозначный ответ.
Следует рассмотреть несколько факторов:

  • размещение утеплителя (внутри или снаружи);
  • материал, из которого возведены несущие конструкции (бетон, дерево и т. д.);
  • климатические условия региона;
  • бюджет на проведение теплоизоляционных работ.

Популярные виды утеплителей для стен являются универсальными изделиями. Они характеризуются низкой теплопроводностью, значительным шумопоглощением, прочностью и долговечностью.

Пенопласт — ячеистые плиты малого веса с низким показателем передачи тепла и поглощения влаги. Размер изоляционного слоя составляет 50-100 мм. Безопасность материала подтверждает его использование в качестве пищевой упаковки. Он долговечен, не деформируется при эксплуатации и не гниет. Плиты пенопласта поглощают звук и вибрацию. Они монтируются снаружи и внутри здания, установка не требует создания каркаса.

Экструдированный пенополистирол ЭППС — материал на основе полистирола, имеющий однородную закрытую ячеистую структуру. Благодаря ней плиты ЭПППС устойчивы к механической нагрузке, характеризуются минимальным водопоглощением и передачей тепла. На стенах, отделанных пенополистиролом, не появится плесень и грибок. Влагостойкий утеплитель можно использовать для изоляции фундамента и цокольного этажа. Добавка антипиренов при изготовлении изделий снижает их горючесть и повышает безопасность эксплуатации. Для утепления стен используются изделия плотностью 35 кг/м3.

Минеральная вата на основе базальтового или стеклянного волокна — лучший утеплитель для стен. Она обладает следующими характеристиками:

  • устойчивость к морозу и высокой температуре;
  • низкий коэффициент теплопроводности;
  • паропроничаемость, позволяющая поддерживать нормальный уровень влажности;
  • устойчивость к химическим веществам, гниению, микроорганизмам;
  • пожаробезопасность.

Это дешевый, экологически безопасный и простой в монтаже материал. Легкая минеральная вата используется для каркасных стен и перегородок, а более плотная (80-150 кг/м3) — для вентилируемых и штукатурных фасадов.

Пенополиуретан — утеплитель для стен, предлагаемый в виде плит или напыления. Последний вариант отличается высокой адгезией с любым материалом, создает монолитный слой, устойчивый к влаге и механическому воздействию. Пенополиуретан является одним из самых эффективных изоляторов, его выбирают для частных домов и производственных помещений. Недостаток теплоизоляции — высокая стоимость и чувствительность к ультрафиолету.

Отражающая теплоизоляция на основе вспененного полиэтилена стала популярна благодаря минимальному размеру толщины полотна при высоких изолирующих свойствах. Материал с армирующим слоем алюминиевой фольги популярен при утеплении балконов, лоджий, бань. Он устойчив к влаге, отражает инфракрасные волны от своей поверхности. Полотно толщиной 2-10 мм отнимает малый объем полезной площади.

Сравнение утеплителей по теплопроводности

Пенополистирол (пенопласт)

Плиты пенополистирола (пенопласта)

Это самый популярный теплоизоляционный материал в России, благодаря своей низкой теплопроводности, невысокой стоимости и легкости монтажа. Пенопласт изготавливается в плитах толщиной от 20 до 150 мм путем вспенивания полистирола и состоит на 99% из воздуха. Материал имеет различную плотность, имеет низкую теплопроводность и устойчив к влажности.

Благодаря своей низкой стоимости пенополистирол имеет большую востребованность среди компаний и частных застройщиков для утепления различных помещений. Но материал достаточно хрупкий и быстро воспламеняется, выделяя токсичные вещества при горении. Из-за этого пенопласт использовать предпочтительнее в нежилых помещениях и при теплоизоляции не нагружаемых конструкций — утепление фасада под штукатурку, стен подвалов и т.д.

Экструдированный пенополистирол

Пеноплэкс (экструдированный пенополистирол)

Экструзия (техноплэкс, пеноплэкс и т.д.) не подвергается воздействию влаги и гниению. Это очень прочный и удобный в использовании материал, который легко режется ножом на нужные размеры. Низкое водопоглощение обеспечивает при высокой влажности минимальное изменение свойств, плиты имеют высокую плотность и сопротивляемость сжатию. Экструдированный пенополистирол пожаробезопасен, долговечен и прост в применении.

Все эти характеристики, наряду с низкой теплопроводностью в сравнении с прочими утеплителями делает плиты техноплэкса, URSA XPS или пеноплэкса идеальным материалом для утепления ленточных фундаментов домов и отмосток. По заверениям производителей лист экструзии толщиной в 50 миллиметров, заменяет по теплопроводности 60 мм пеноблока, при этом материал не пропускает влагу и можно обойтись без дополнительной гидроизоляции.

Минеральная вата

Плиты минеральной ваты Изовер в упаковке

Минвата (например, Изовер, URSA, Техноруф и т.д.) производится из натуральных природных материалов – шлака, горных пород и доломита по специальной технологии. Минеральная вата имеет низкую теплопроводность и абсолютно пожаробезопасна. Выпускается материал в плитах и рулонах различной жесткости. Для горизонтальных плоскостей используются менее плотные маты, для вертикальных конструкций используют жесткие и полужесткие плиты.

Однако, одним из существенных недостатков данного утеплителя, как и базальтовой ваты является низкая влагостойкость, что требует при монтаже минваты устройства дополнительной влаго- и пароизоляции. Специалисты не рекомендуют использовать минеральная вату для утепления влажных помещений – подвалов домов и погребов, для теплоизоляции парилки изнутри в банях и предбанников. Но и здесь ее можно использовать при должной гидроизоляции.

Базальтовая вата

Плиты базальтовой ваты Роквул в упаковке

Данный материал производится расплавлением базальтовых горных пород и раздуве расплавленной массы с добавлением различных компонентов для получения волокнистой структуры с водоотталкивающими свойствами. Материал не воспламеняется, безопасен для здоровья человека, имеет хорошие показатели по теплоизоляции и звукоизоляции помещений. Используется, как для внутренней, так и для наружной теплоизоляции.

При монтаже базальтовой ваты следует использовать средства защиты (перчатки, респиратор и очки) для защиты слизистых оболочек от микрочастиц ваты. Наиболее известная в России марка базальтовой ваты – это материалы под маркой Rockwool. При эксплуатации плиты теплоизоляции не уплотняются и не слеживаются, а значит, прекрасные свойства низкой теплопроводности базальтовой ваты со временем остаются неизменными.

Пенофол, изолон (вспененный полиэтилен)

Пенофол и изолон – это рулонные утеплители толщиной от 2 до 10 мм, состоящие из вспененного полиэтилена. Материал также выпускается со слоем фольги с одной стороны для создания отражающего эффекта. Утеплитель имеет толщину в несколько раз тоньше представленных ранее утеплителей, но при этом сохраняет и отражает до 97% тепловой энергии. Вспененный полиэтилен имеет длительный срок эксплуатации и экологически безопасен.

Изолон и фольгированный пенофол – легкий, тонкий и очень удобный в работе теплоизоляционный материал. Используют рулонный утеплитель для теплоизоляции влажных помещений, например, при утеплении балконов и лоджий в квартирах. Также применение данного утеплителя поможет вам сберечь полезную площадь в помещении, при утеплении внутри. Подробнее об этих материалах читайте в разделе «Органическая теплоизоляция».

Теплопроводность пенопласта

Основной характеристикой, благодаря которой пенополистирол получил широкое признание в качестве материала для утепления №1, является сверхнизкая теплопроводность пенопласта. Относительно небольшая прочность материала с лихвой компенсируется такими преимуществами, как стойкость к воздействию большинства агрессивных соединений, небольшой вес, нетоксичность и безопасность при работе. Хорошие теплоизолирующие свойства пенопласта дают возможность обустроить утепление дома по относительно небольшой цене, при этом долговечность такого утепления рассчитана на срок не менее 25 лет службы.

Таблица теплопроводности материалов

МатериалТеплопроводность материалов, Вт/м*⸰СПлотность, кг/м³
Пенополиуретан0,02030
0,02940
0,03560
0,04180
Пенополистирол0,03710-11
0,03515-16
0,03716-17
0,03325-27
0,04135-37
Пенополистирол (экструдированный)0,028-0,03428-45
Базальтовая вата0,03930-35
0,03634-38
0,03538-45
0,03540-50
0,03680-90
0,038145
0,038120-190
Эковата0,03235
0,03850
0,0465
0,04170
Изолон0,03133
0,03350
0,03666
0,039100
Пенофол0,037-0,05145
0,038-0,05254
0,038-0,05274

Экологичность.

Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.

Пожарная безопасность.

Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.

Паро- и водонепроницаемость.

Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что  эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.

Долговечность.

В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату  в первые годы службы значительно снижают свою эффективность.  Зато пенополиуретан обладает сроком службы свыше 50 лет.

Какой утеплитель лучше купить для дома в 2018-2019 году?

При выборе теплоизолирующего материала следует понимать, что универсальных утеплителей не существует. Каждый элемент здания требует совершенно разного набора характеристик, наиболее полно соответствующего тем или иным требованиям. Например, утепление кровли лучше производить с помощью базальтовых и стекловолоконных плит, а для фундамента лучше использовать материалы с повышенной влагостойкостью типа экструдированного пенополистирола.

Выбор утеплителя для стен зависит и от того, с какой стороны, внутренней или наружной, будет располагаться слой теплоизолятора, из какого строительного материала выполнены стены, какая последующая отделка предусмотрена проектом, какие погодные и климатические условия преобладают в данной местности. Кроме того, следует учитывать свои финансовые возможности, поскольку приобретение утеплителя является довольно значимой статьёй расходов на строительство дома. Лучшим выходом при сложностях с выбором утеплителя станет консультация со специалистом, который сможет учесть все нюансы, влияющие на обеспечение тепловой защиты дома.

Методы определения КТП

Существует 2 метода определения КТП:

  1. Стационарный – предполагает работу с параметрами, которые не будут изменяться в течение длительного времени или изменяющиеся незначительно. Преимущество этого метода в высокой точности вычисления результата. К недостаткам относится сложность регулировки эксперимента, большое количество используемых термопар, а также длительность затраченного времени на подготовку и проведение опыта. Этот метод подходит для вычисления КТП жидкостей и газов, если не учитывать передачу энергии конвекцией и излучением. 
  2. Нестационарный – визуально выглядит более простой и требует для выполнения от 10 до 30 минут. Нашла своё широкое применение из-за того, что в процессе исследования можно узнать не только КТП, но и температурную проводимость, а также теплоёмкость образца. 

Для проведения анализа теплопроводности строительных материалов применяются электронные приборы, например, ИТП-МГ4 «Зонд». Такие средства для вычисления КТП отличаются рабочим диапазоном температур, а также процентом погрешности.
 

Видео описание

Как выполняется вычисление КТП с помощью электронного прибора, смотрите в видео:

Таблица тепловой эффективности материалов

Большинство сырья, которое используется при строительстве, не нуждается в самостоятельном измерении КТП. Для этого существует таблица теплопроводности материалов, которая показывает основные характеристики, требуемые для расчёта тепловой эффективности. 

МатериалПлотность, кг/м3Теплопроводность, Вт/(м*градусы)ТеплоёмкостьДж/(кг*градусы)
Железобетон25001,7840
Бетон на гравии или щебне из природного камня24001,51840
Керамзитобетон лёгкий500-12001,19-0,45840
Кирпич строительный800-15000,24-0,3800
Силикатный кирпич1000-22000,51-1,29750-840
Железо787070-80450
Пенополистирол Пеноплэкс110-1400,042-0,051600
Плиты минераловатные150-2500,043-0,063

Большинство материалов отличается по своему составу. Например, теплопроводность кирпича зависит от того, из чего он сделан. Клинкерный имеет КТП от 0,8 до 1,6, а кремнезёмный 0,15. Также есть отличия по методу изготовления и стандартам ГОСТ. 

Пенополистирол разной толщиныИсточник cmp24.com.ua

Коротко о главном

Коэффициент теплопроводности – это скорость передачи тепла через материал в течение определённого времени.

Знание КТП нужно для улучшения тепловой эффективности конструкции. Например, если она должна быстро отдавать тепло, то её нужно делать из сырья с высокой передачей энергии, а для закрытых помещений наоборот нужны дополнительные утеплители. Это поможет сэкономить деньги на отоплении.

На теплопроводность материала влияет его плотность, влажность и волокнистость.
 

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Монтаж минеральной ваты

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

Характеристики разных видов утеплителей

В качестве утеплителей применяются следующие виды:

минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

Данный материал относится к самым доступным и простым вариантам

  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

Для пеноплекса характерна пористая структура

  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

Данный вариант бывает разной толщины

пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины,  лен или пробковое покрытие

При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность

Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.

Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

РегионМоскваСанкт-ПетербургРостовСочи

Теплопроводность3,143,182,752,1

То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 – 150 кг/м30,043-0,06
Пеностекло, крошка, 151 – 200 кг/м30,06-0,063
Пеностекло, крошка, 201 – 250 кг/м30,066-0,073
Пеностекло, крошка, 251 – 400 кг/м30,085-0,1
Пеноблок 100 – 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 – 220 кг/м30,057-0,063
Пеноблок 221 – 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Связь ветрозащиты с теплопроводностью

Для внутреннего утепления стен, перегородок и перекрытий, при использовании минераловатных плит любого типа, проблемы с влажностью, как правило, не возникают. Однако создаваемая на их основе теплоизоляция фасадов нередко приводит к таким последствиям:

  1. Поток воздуха изнутри помещения проходит через утеплитель, незначительно снижая теплоизоляционные характеристики конструкции и изменяя положение «точки росы».
  2. Воздушный поток снаружи тоже попадает внутрь минераловатной плиты и имея влажность в пределах 80–100% напитывает материал.
  3. Теплопроводность влажной минваты заметно увеличивается. Особенно заметно это у шлаковаты, теряющей при этом до 55% своих характеристик.

Чем выше ограждающая конструкция, тем интенсивнее перемещается воздух, а это значит что утеплитель сильнее увлажняется.

Снижение теплопроводности будет ещё больше, если внешний слой материала имеет зазоры. Таким образом, отсутствие ветрозащиты приводит не только к выдуванию тепла из стен, но и к попаданию внутрь теплоизоляции атмосферной влаги (повышающейся во время дождя, снега или града). Для того чтобы избежать такой ситуации требуется обязательное применение ветрозащитных конструкций.

Использование ветрозащиты целесообразно в таких ситуациях, когда для утепления применяются материалы с низкой плотностью, к которым как раз и относятся минераловатные плиты. Дополнительными факторами является и высота ограждающих конструкций больше 7 м, скорость ветра выше 8 м/с (или 28 км/ч), а также наличие в обшивке зазоров толщиной больше 2 мм.

Специалистами рекомендовано устройство ветрозащиты для домов, расположенных в местности с повышенной влажностью воздуха – у реки, моря, озера или ленного массива.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий