Трехфазные реле напряжения – Новатек-Электро – производство электротехнической продукции
Реле контроля напряжения 3-х фазное – защитное устройство, предназначенное для обеспечения работы трехфазных потребителей переменного тока при недопустимых колебаниях сетевого напряжения, обрыве, перекосе, нарушении чередования или слипания фаз.
В случае изменения напряжения в сети – превышения допустимых значений или их снижение, ниже минимального уровня, любой электродвигатель промышленного назначения и бытовая техника, могут выйти из строя
Именно поэтому, важность установки трехфазного реле для контроля электрической нагрузки актуальна и, безусловно, оправдана
Новатек-Электро – компания-производитель, реализующая реле контроля трехфазного напряжения оптом и в розницу. Мы предлагаем выгодные условия продажи всем нашим покупателям и дилерам, в том числе. Наша продукция, в число которой входит и трехфазное реле контроля фаз, благодаря своей функциональности, практичности и адекватной цене, популярна и востребована.
Особенности устройства и область применения
Защита трехфазного электродвигателя от перегрузки необходима как в бытовом обиходе, так и во многих производственных сферах.
Трехфазное реле напряжения применяют для обеспечения правильной работы:
Систем кондиционирования;
Холодильного оборудования;
В оборудовании со схемой АВР и любого другого оборудования, использующего электродвигательную нагрузку.
Реле напряжения трехфазные от Новатек Электро выпускаются в разной модификации, с учетом потребностей проблемных сетей, где можно наблюдать не только перебои в напряжении, но также коммутационные и импульсные помехи. Устройства оснащены специальной задержкой при посадках напряжения, что делает цифровое реле напряжения трехфазное эффективным в работе при кратковременных просадках напряжения.
Приборы трехфазного реле напряжения монтируются на стандартную DIN-рейку, они легкие и малогабаритные, что делает процесс установки и дальнейшего обслуживания устройства, простым и безопасным.
Подключение прибора происходит параллельно нагрузке, но, что примечательно, его работа не зависит от мощности нагрузки. Трехфазное реле защиты на выходах имеет две группы контактов (замкнутую и разомкнутую), независимых друг от друга и способных коммутировать нагрузки до 5А.
Ассортимент продукции
Трехфазное реле контроля напряжения представлено следующим модельным рядом:
РНПП-311 – устройство обеспечивает работу потребителя при условии возможных основных видов аварий в элктросети, таких, как, превышение допустимых порогов значений сетевого напряжения, слипание фаз или изменение их последовательности, нарушение полнофазности;
РНПП-311М – контроль трехфазного напряжения выполняется на тех же условиях, что и в случае применения прибора РНПП-311. Однако, светодиодная панель индикации в данной модели, усовершенствована и, помимо наличия сетевого напряжения, а также состояния нагрузки, указывает на тип аварийной ситуации, что значительно облегчает последующие действия пользователя.
РНПП-301 – в данной модификации трехфазное реле напряжения и контроля фаз, обеспечивает работу устройства в режимах линейного и фазного напряжения, имеет 6 потенциометров для установки параметров и регулировки работы устройства.
РНПП-302 – прибор имеет более-расширенное меню, которое помимо основных функций позволяет устанавливать временной интервал задержки при нарушении, заданных параметров, с возможностью автоматического запуска, после восстановления допустимых сетевых значений.
РНПП-311-1 – данный прибор двухканальный и помимо основных функций, возложенных на реле напряжение трехфазное, может контролировать частоту сети.
РНПП-311-2 – устройство двухканальное, осуществляющее контроль 3-х фазной сети 380В/50Гц с высокой точностью, а также оснащено сигнальными индикаторами, которые подают информацию пользователю о полнофазности сети или частичном пропадании фазы.
В комплекте с устройством прилагается гарантия от производителя, а также полная детализированная инструкция, которая поможет пользователю правильно установить прибор, обслуживать его в действии и верно «читать» показания индикационной панели.
Подключаем реле контроля напряжения своими руками
Классификация защитных реле напряжения Реле могут быть предназначены для всего дома и для одной розетки.
С монтажом все предельно просто. Для стабилизатора придётся изготавливать защитный ящик для установки возле щитка, или врезаться в сеть, при установке в квартире.
Постоянные включения и выключения не пойдут на пользу как подключенной к сети технике, так и самому регулятору напряжения.
Выводы и полезное видео по теме Чтобы Вам проще было сориентироваться в схемах подключения и выборе подходящего реле регулятора напряжения, мы сделали подборку видеоматериалов с описанием всех нюансов работы этого прибора. Время повторного включения от 3 до сек. Электронные, на симмисторах или тиристорах или других полупроводниковых ключах, сложные и дорогие устройства.
См. также: Как сэкономить тэр на предприятии
Как подключить реле напряжения
Схема подключения реле напряжения РН Рассчитаны РН на небольшие токи до 16А или мощность до 3,5 кВт, но для подключения более высокой нагрузки, РН можно включать совместно с контакторами магнитными пускателями. Обеспечивать стационарную установку реле напряжения таким образом, чтобы имелся доступ для его параметрирования и обслуживания.
Особенно остро вопрос защиты электроприборов от перепадов напряжения стоит в жилых многоквартирных домах старой постройки, а так же частных жилых домах подключенных к старым линиям электропередач. Однофазные реле напряжения отключают одну фазу, а трехфазные — одновременно все три фазы. Установка на рейку более удобна по нескольким причинам: РКН, установленное на din-рейку, защищает электроаппаратуру всей квартиры; приобретение маломощных приборов для несколько розеток обойдётся дороже, чем одного мощного; Прибор на din-рейке малозаметен, а в розетке выпирает из стены и есть опасность его сломать. Цифровая индикация в большинстве случаев оказывается ненужной, хотя она облегчает процесс настройки прибора.
ТЕСТ: Попробуйте ответить на вопросы и оценить свои знания того, какое выбрать защитное устройство. Эта схема применяется, если номинальный ток автомата меньше тока устройства. Эта организация изготавливает изделия под торговой маркой DigiTop. Настройка реле напряжения Введение.
Как установить реле контроля напряжения в щиток квартиры самостоятельно
Контакты реле.
В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.
3.1. Нормально разомкнутые контакты.
Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.
3.2. Нормально замкнутые контакты.
Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.
3.3. Перекидные контакты.
У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.
Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.
К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.
В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.
Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.
В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.
В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.
Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.
В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.
Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.
Простые системы АВР
Работает все очень просто. Схема АВР на двух контакторах: Надеемся, что эта краткая статья поможет вам собрать и запустить схему автоматического ввода резерва на контакторе, и электроснабжение вашего дома или небольшого предприятия станет бесперебойным.
Восстанавливающиеся АВР.
Ставим номиналом не менее автомата А2, если не получится приобрести выключатель — устанавливаем автоматический выключатель с номиналом выше чем у А2
Замыкающие контакты контакторов должны быть рассчитаны на полный ток нагрузки, для размыкающих это неважно можно использовать блок-контакты. Оба автомата QS1 и QS2 должны быть включены, при этом катушка КМ получит питание и будет втянута, а соответственно её замыкающий контакт в цепи основного ввода тоже замкнут и размыкающий контакт в цепи резервного ввода разомкнут
Такие неконтролируемые коммутации совершенно недопустимы на производствах с непрерывным циклом или в медицинских учреждениях в операционных больниц, например , а также на других важных объектах. В дальнейшем мы будем совершенствовать схему, добавим выдержки времени и различные блокировки. В случае исчезновения напряжения реле К1 обесточивается, К1. Рубильник выбирается с тремя положениями, где среднее из них полностью отсекает электричество.
Внешние входы аварийного отключения вводов. Такое реле выполняет функцию постоянного слежения за параметрами напряжения основной сети. Так как оба ввода в работе, отпадает необходимость следить за готовностью резервной линии к принятию нагрузки.
Как работает автоматический ввод резервного питания
В соответствии с индивидуальными условиями, схема АВР дополнительно оснащается пусковым блоком, который управляет запуском автономного источника питания, будь то аккумуляторы с инвертором или генератор на жидком топливе. Контроль состояния контактов контактора. При пропадании напряжения в основной линии катушка КМ 1 обесточивается, и питание через замкнувшийся контакт КМ1 начинает поступать на обмотку КМ 2, через контакторы которого к нагрузке подключается резервный ввод. В настоящее время промышленность в большом ассортименте выпускает готовые блоки АВР
Для таких важных объектов, как больницы, объекты оборонной промышленности, да и для многих других, аварии на электростанциях или в сетях электроснабжения сулят большие неприятности, именно по этой причине большое внимание всегда уделялось и уделяется проектированию и возведению систем резервного электроснабжения
При восстановлении параметров тока в основной цепи происходит замыкание контактов контактора основной цепи с одновременным размыканием контактов контактора резерва. Этот способ менее затратный, нежели генераторный, но не способен выдавать длительное время ток для мощных бытовых приборов. В настоящее время промышленность в большом ассортименте выпускает готовые блоки АВР.
Назначение АВР — повышение надежности электроснабжения потребителей. Более того, электродвигатель используется только один, а переключение вводов осуществляется его вращением вперед и назад. Простейший трёхфазный АВР или как подключить модуль управления МАВР-3
Устройство и модели реле контроля фаз
Zamel CKM-01
Пойдём от простого к сложному. В качестве примера рассмотрим сначала реле СКМ-01 производства польской фирмы Zamel.
CKM-01 от Zamel. Краткие характеристики на упаковке
У реле на вход подаётся три фазы (L1, L2, L3) и ноль (N), питание внутренней схемы – от фазы L1. Выходное реле — с одним переключающим контактом. Также имеются два индикатора, которые показывают чередование и асимметрию фаз.
Вот как это реле выглядит вживую:
Реле контроля фаз Замель CKM-01. Внешний вид
Электрическая схема реле CKM-01 Zamel очень простая, собрана всего на двух транзисторах. Внутренности CKM-01 Zamel можно рассмотреть ниже на фото.
Zamel CKM-01. Внутреннее устройство
Zamel CKM-01. Внутреннее устройство
Zamel CKM-01. Внутреннее устройство
Инструкцию от производителя можно будет скачать в конце статьи.
РНПП-311
Теперь рассмотрим популярную отечественную модель – РНПП-311. Полное название – Реле напряжения, перекоса и последовательности фаз. Отсюда и аббревиатурное название. Подробнее – в инструкции в конце статьи. Недавно появилось реле РНПП-311М, у него более современный и компактный корпус и больше настроек.
Реле напряжения, перекоса и последовательности фаз РНПП-311М
Далее, по степени увеличения функциональности.
OMRON K8AB
Более навороченная модель — OMRON K8AB:
Omron K8AB-PA. Внешний вид
Тут уже есть дополнительный регулятор времени срабатывания (реагирования). Также это реле реагирует не только на понижение, но и превышение напряжения на одной из фаз.
Схема собрана на микроконтроллере, как и все модели, которые рассмотрю ниже.
Временная диаграмма и схема, расположенная на боковой стенке этого реле:
Omron K8AB – временные диаграммы, настройка и схема
В линейку реле Omron K8AB входят 4 модели, и они обеспечивают очень расширенные настройки, на любой вкус. Инструкция – там же.
Carlo Gavazzi DPC01
Ещё одно реле контроля напряжения, из тех, что мне попадались – Carlo Gavazzi DPC01. Оно участвует в схеме промышленного компрессора-холодильника, про который я писал в статье про применение Устройства Бесперебойного питания (ИПБ, UPS) или про то, как я спас молоко от прокисания.
Carlo Gavazzi DPC01
На входе – три фазы, на выходе – два реле, контакты которых в данном случае подключались в схему последовательно и рубили цепь питания схемы управления. Кроме четырех регуляторов настроек, под крышкой с сорванной пломбой – ещё переключатели режимов работы.
В той статье я не написал, что пытался запустить этот холодильник, исключив это реле из схемы. Но Carlo Gavazzi оказался прав – компрессор не хотел запускаться при таком плохом качестве напряжения.
Евроавтоматика ФиФ CKF-318-1
Устройство трехфазного реле контроля и наличия фаз белорусского производителя приведена в этой статье. Показано устройство и реальный пример подключения и установки в компрессоре.
Схема подключения и монтаж реле напряжения
Большинство реле монтируются в распределительном щитке на DIN-рейку. Они могут устанавливаться в любом положении, сохраняя при этом свою работоспособность. Однако схема подключения у разных моделей будет отличаться, поэтому она наносится на корпус каждого прибора.
Это позволяет легко соединить реле контроля трехфазного напряжения с электрической цепью, соблюдая правила, одинаковые для всех типов этих устройств.
Подключение вводных контактов к сети осуществляется через контактор или специальный пускатель. Проводники всех трех фаз подключаются к соответствующим клеммам, расположенным сверху прибора. Фазы маркируются буквами А, В и С, а клемма для нулевого провода – буквой N.
Нижние клеммы нумеруются 1, 2, 3 и подключаются в следующей последовательности:
- Из клеммы № 1 проводник подсоединяется к одному из выходов катушки, находящейся в контакторе.
- Клемма № 3 подключается к любой фазе, проходящей в обход реле напряжения.
- Второй выход катушки контактора подключается к нулевому проводнику трехфазной сети.
Соединение силовых элементов осуществляется следующим образом. Каждая фаза, подающая напряжение, подключается к соответствующей входной клемме контактора. Проводники, отходящие к нагрузке, соединяются с выходными клеммами контактора. Для подключения нулевых проводников в распределительном щитке устанавливается общая нулевая шина.
Контакты всех соединений должны быть максимально плотными, поэтому желательно не пользоваться скрутками, особенно при соединении проводников с клеммами контактора. Существуют специальные наконечники, обеспечивающие надежный контакт. Все подключения выполняются с помощью медных проводов, сечением от 1,5 до 2,5 мм2.
5 Сетевой насос для котельной
Описание работы схемы управления электроприводом сетевого насоса.
Схема управления состоит из двух основных частей – Схемы включения двигателя дымососа и Схемы включения двигателя дутьевого вентилятора. В свою очередь, каждая схема содержит схему запуска (управления) и схему аварийной звуковой и световой сигнализации.
Управление сетевым насосом котла. Схема электрическая
Схема включения двигателя дымососа.
Дымосос должен включаться первым, чтобы очистить канал прохождения дыма и гарантированно обеспечить розжиг пламени и ровное горение пламени горелки.
В схему управления дымососом входят следующие элементы:
- 1FU1 – предохранитель цепи управления,
- 1SF1 – выключатель питания,
- SA1 – переключатель режимов работы,
- КА1 – промежуточное реле управления контактором,
- КМ1 – контактор включения двигателя дымососа,
- КК1 – контакты теплового реле перегрузки двигателя дымососа.
Схема работает следующим образом.
Однофазное питание 220В поступает на схему через предохранитель 1FU1 и выключатель 1SF1. Далее, в зависимости от положения переключателя SA1, возможны различные режимы работы – принудительное включение, рабочий режим, режим снятия сигнализации.
В рабочем режиме включается реле КА1, и через его контакты подается питание на катушку контактора КМ1. В цепь питания КМ1 также входят контакты теплового реле КК1, которые размыкаются при перегрузке двигателя дымососа.
Схема аварийной звуковой и световой сигнализации двигателя дымососа.
С общих цепей схемы по проводам 701 и 703 приходит питание схемы аварийной сигнализации. При аварийном выключении дымососа (например, при пропадании питания из-за перегорания предохранителя 1FU1) реле КА1 выключается, и через свои контакты подает питание на звуковой сигнализатор. Выключить сигнал можно переключателем SA1, что также обесточит катушку контактора КМ1 и гарантированно выключит схему.
Индикаторная лампа HL1, которая питается через контакты реле КА1, контакты контактора КМ1 и резистор R1, служит для индикации рабочего режима или аварийной ситуации в зависимости от режима и положения переключателя SA1.
Работа схемы управления двигателем дутьевого вентилятора.
В состав схемы управления двигателем дутьевого вентилятора входят следующие элементы:
- 1FU2 – предохранитель цепи управления,
- 1SF2 – выключатель питания,
- SA2 – переключатель режимов работы,
- SA3 – байпас блокировки включения вентилятора без дымососа,
- КА2 – промежуточное реле управления контактором дутьевого вентилятора,
- КМ2 – контактор включения двигателя вентилятора,
- КК2– контакты теплового реле перегрузки двигателя вентилятора.
Включение дутьевого вентилятора невозможно без включения дымососа. Это необходимо для безопасной и правильной работы всей установки.
Данная проверка обеспечивается включением в цепь питания контактора вентилятора КМ2 контакта реле КА1. Таким образом, запуск вентилятора возможен, только если включено реле КА1 включения дымососа.
Однако, для целей проверки возможно шунтирование данного контакта КА1 переключателем SA3.
Контактор КМ1 включения двигателя дутьевого вентилятора при подаче напряжения на его катушку через предохранитель 1FU2, выключатель 1SF2, реле КА1, КА2, и контакты теплового реле КК2. Управление – через переключатель SA2 и промежуточное реле КА2, как и в схеме управления дымососом.
Схема аварийной звуковой и световой сигнализации двигателя дутьевого вентилятора.
Работа схемы аналогична схеме сигнализации дымососа. Питание схемы – через те же общие цепи.
Для индикации используется звуковой сигнализатор и индикаторная лампа HL2, которая питается через контакты КА2, КМ2 и ограничительный резистор R2.
Силовая часть схемы.
В силовую часть схемы входят два двигателя – М1 (дымосос) и М2 (дутьевой вентилятор).
Двигатель М1 получает трехфазное питание 380В через автоматический выключатель QF1, который защищает его от короткого замыкания и от перегрузки, далее – через контактор КМ1 и тепловое реле КК1. Тепловое реле защищает двигатель от перегрузки и пропадания фазы. Ток уставки теплового реле должен быть выбран таким образом, чтобы он был на 10-20% больше рабочего тока двигателя.
Двигатель дутьевого вентилятора М2 питается через автоматический выключатель QF2, контактор KM2, тепловое реле КК2. Назначение этих элементов – то же, что и для двигателя М1.
Какие схемы работы АВР существуют
Рабочие примеры показывают успешность применения щита автозапуска для бесперебойного электроснабжения дома.
Простые схемы
Один из вариантов схемы АВР показывает переключение электроэнергии на генератор с основной линии. Здесь присутствует принцип защиты от короткого замыкания. В данном АВР предусмотрены электрическая и механическая блокировка, которая не дает запуститься одновременно двум вводам.
Схема АВР для дома
Обозначения:
AB1 и AB2 – двухполюсные автоматические выключатели на основном и резервном вводе.
К1 и К2 – катушки контакторов.
К3 – контактор в роли реле напряжения.
K1.1, K2.1 и K3.1 – нормально-замкнутые контакты контакторов.
К1.2, К2.2, К3.2 и К2.3 – нормально-разомкнутые контакты.
При автоматическом переключении АВ1 и АВ2 работа системы АВР выглядит следующим образом:
Питание от основной линии в штатном режиме. При насыщении катушки К3 происходит срабатывание реле напряжения, что приводит к замыканию К2.2 и К2.3 и размыканию К1.
Энергообеспечение при аварийном режиме. При проблемах напряжения на основной линии К3 не насыщается, напряжение падает ниже допустимого, контакты приходят к исходному положению. Таким образом напряжение поступает на катушку К1, из-за чего меняется положение контактов К1.1 (имеющаяся роль электрической защиты) и К1.2 (которая снимает блокировку подачи питания на нагрузку).
Срабатывание механической блокировки. В этом случае используется реверсивный пускатель (если есть на конструкции электромеханического прибора).
Пример работы двух простых АВР для трехфазного напряжения, где, в одном случае энергообеспечение производится по односторонней схеме, а в другом – по двустороннему принципу.
Пример односторонней (В) и двусторонней (А) реализации простого трехфазного АВР
Обозначения:
AB1 и AB2 – трехполюсные автоматы защиты;
МП1 и МП2 – магнитные пускатели;
РН – реле напряжения;
мп1.1 и мп2.1 – групповые нормально-разомкнутые контакты;
мп1.2 и мп2.2 – нормально-замкнутые контакты;
рн1 и рн2 – контакты РН.
Схема А имеет два равноправных ввода, чтобы не произошло одновременного переключения линий. Здесь используется принцип взаимный блокировки, как на контакторах МП1 и МП2. Благодаря очередности автоматического включения АВ1 и АВ2, будет зависеть от какой линии пойдет нагрузка. Если первым сработает АВ1, то задействуется пускатель МП1, а контакт МП1.2 разрывается, что приводит к блокировке напряжения на катушку МП2. Если отключается источник 1, то пускатель МП1 переходит н свое исходное положение. И в действие вступает ПМ2, который блокирует первый пускатель и переводит подачу нагрузки от источника 2. Переключать источники можно и в ручном режиме с помощью АВ1 и АВ2.
Для одностороннего принципа работы используется схема В. Основное ее отличие в том, что в цепи подключения добавляется реле напряжения (РН) и при восстановлении работы оно возвращает подключение на источник 1. Но при этом размыкается РН2, который отключает пускатель МП2 и замыкает РН1, что позволяет подключить МП1.
Экономия себе во вред
Предложенная схема – не наилучшее решение при электроснабжении со значительной нестабильностью. При частом выходе напряжения за пределы релейных установок электроприборы будут отключаться и сделают просто невыносимой работу с ними. Для таких электросетей необходим стабилизатор напряжения. А схема, показанная выше, – это менее затратный вариант по сравнению со стабилизацией или, например, сгоревшей стиральной машинкой, используемой без такой схемы.
В заключение еще раз напомним читателям о том, что мы все являемся потребителями электроэнергии, распределяемой трехфазными ЛЭП. Риск обрыва или короткого замыкания в одной из фаз существует с вероятностью 50 на 50. Как следствие этого – перекос фазных напряжений. Следовательно, ваша домашняя электросеть должна быть готова перенести это событие без потерь благодаря использованию реле напряжения. И если в силу определенных причин приходится отказаться от инсталляции модернизированного электрического щита, можно использовать индивидуальные защитные коммутаторы-розетки:
Реле напряжения – розетка
Реле напряжения – розетка
На этом все.
Основные виды и технические характеристики электромагнитных реле
Различают следующие типы:
- Реле тока – по своему принципу действия практически не отличается от реле напряжения. Принципиальная разница заключается лишь в конструкции электромагнитной катушки. Для реле тока катушка наматывается проводом большого сечения, и содержит небольшое количество витков, ввиду чего имеет минимальное сопротивление. Реле тока может быть подключено через трансформатор либо напрямую к контактной сети. В любом случае оно корректно контролирует силу тока в управляемой сети, на основании чего осуществляются все процессы коммутации.
- Реле времени (таймеры) – обеспечивает задержку времени в сетях управления, необходимую в некоторых случаях для включения устройств в соответствии с определенным алгоритмом. Такие реле имеют расширенный диапазон настроек, необходимый для обеспечения высокой точности их работы. К любому таймеру времени предъявляются отдельные требования. Например, низкое потребление электрической энергии, небольшие габариты, высокая точность работы, наличие мощных контактов и т. д. Стоит отметить, что для реле времени, которые включают в конструкцию электропривода, дополнительные повышенные требования не предъявляются. Главное, чтобы они имели прочную конструкцию и обладали повышенной надежностью, поскольку им приходится постоянно функционировать в условиях повышенных нагрузок.
Любой из типов электромагнитных реле имеет свои определенные параметры
Во время выбора необходимых элементов стоит уделить внимание составу и свойствам контактных пар, определиться с особенностью питания. Далее следует изучить их основные характеристики:
- Напряжение либо ток сработки – минимальная величина силы тока либо напряжения, при которой осуществляется переключение контактных пар электромагнитного реле.
- Напряжение либо ток отпускания – максимальная величина, управляющая ходом якоря.
- Чувствительность – минимальная величина мощности, необходимая для сработки реле.
- Сопротивление обмотки.
- Рабочее напряжение и сила тока – величины этих параметров, необходимые для оптимальной работы электромагнитного реле.
- Время сработки – период времени от начала подачи питания на контакты реле до его включения в работу.
- Время отпускания – период, во время которого якорь электромагнитного реле займет свое изначальное положение.
- Частота коммутации – количество раз сработки электромагнитного реле за отведенный временной интервал.
Контактные и бесконтактные
В соответствии с конструкционными особенностями исполнительных элементов, все электромагнитные реле делятся на два типа:
- Контактные – имеют группу электрических контактов, которые обеспечивают работу элемента в электрической сети. Коммутация осуществляется за счет их замыкания либо размыкания. Являются универсальными реле, используются практически во всех типах автоматизированных электрических сетей.
- Бесконтактные – их главная особенность в отсутствии исполнительных контактных элементов. Процесс коммутации осуществляется за счет регулировки параметров напряжения, сопротивления, ёмкости и индуктивности.
По сфере применения
Классификация электромагнитных реле согласно области их использования:
- цепи управления;
- сигнализация;
- автоматические системы противоаварийной защиты (ПАЗ, ESD).
По мощности управляющего сигнала
Все типы электромагнитных реле имеют определенный порог чувствительности, в связи с этим они делятся на три группы:
- маломощные (менее 1 Вт);
- среднемощные (до 9 Вт);
- высокомощные (более 10 Вт).
По быстродействию управления
Любое электромагнитное реле отличается быстродействием управляющего сигнала, в связи с чем они делятся на:
- регулируемые;
- замедленные;
- быстродействующие;
- безынерционные.
По типу управляющего напряжения
Реле разделяют на следующие категории:
- постоянного тока (DC);
- переменного тока (AC).
На фото ниже видно, что на катушке указано рабочее напряжение 24 VDC, то есть 24 В постоянного тока.
Устройство реле
Реле представляет собой катушку, обмотка которой содержит большое количество витков медного изолированного провода. Внутри катушки находится металлический стержень (сердечник), закрепленный на Г-образной пластине, называемой ярмом. Катушка и сердечник образуют электромагнит, а сердечник, ярмо и якорь образуют магнитопровод реле.
Над сердечником и катушкой расположен якорь, выполненный в виде пластины из металла и удерживаемый при помощи возвратной пружины. На якоре жестко закреплены подвижные контакты, напротив которых расположены соответствующие пары неподвижных контактов. Контакты реле предназначены для замыкания и размыкания электрической цепи.