Как защитить бытовую технику от перепадов напряжения в электрической сети

Длительные перенапряжения

Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой.

Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность.

При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы. Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор. Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться.

Наглядно про обрыв ноля и что нужно при этом делать – на видео:

Другие виды защитных устройств

Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.

Сетевые фильтры

Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.

Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.

Стабилизаторы

В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.

Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.

Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.

Устройство защиты от импульсных перенапряжений

УЗИП – устройство защиты от импульсных перенапряжений

Защита от перенапряжения сети

Ограничитель импульсных перенапряжений

Молниезащита дома: устройство и монтаж

Защита от скачков напряжения

Чем поможет сетевой фильтр

Чаще всего бытовые сетевые фильтры выполнены в виде удлинителя. Таким образом, к нему может быть подключено сразу несколько единиц бытовой техники. Фильтры отличаются количеством розеток и длиной кабеля. Обычно устройство снабжается собственным выключателем с индикацией подачи питания. Фильтр может иметь индивидуальные выключатели питания для каждой розетки.

Популярные сетевые фильтры

Ряд моделей имеют защиту от короткого замыкания и перегрузки. Общий ток нагрузки устройств такого рода не превышает 6-16А. Собственно фильтр таких устройств состоит из нескольких конденсаторов и катушек индуктивности. Таким образом, обеспечивается защита электроники от маломощных и коротких импульсов помех. Последние могут создаваться, в том числе, бытовой техникой, подключенной в домашней сети.

Заметим, что блоки питания большинства современных электронных приборов уже имеют аналогичные схемы в своем составе. Иными словами, подобные сетевые фильтры можно рассматривать как удлинители с дополнительной фильтрацией и сервисными возможностями.

Особенности настройки РКН

Реле напряжения имеют три основные настройки:

  • Установка порогового срабатывания по максимальному значению – Umax.
  • Установка минимального значения, при котором происходит срабатывание устройства – Umin.
  • Установка времени задержки коммутации после нормализации параметров электрической сети.

При установке пороговых значений необходимо соблюдать «золотую середину». Если пороги заданы слишком широко, то потребители могут не получить эффективную защиту. Пороги, заданные слишком жестко, становятся причиной слишком частого срабатывания РКН. Частые включения и выключения негативно влияют на эксплуатационный период как самого реле контроля напряжения, так и подключаемых нагрузок.

Управление настройками реле контроля напряжения может быть электромеханическим или цифровым. В первом случае пороговые значения устанавливаются переменным резистором, расположенным на передней панели, во втором – кнопками с отображением значений на LED-экране.

Некоторые РКН не имеют возможности настройки пороговых значений. Обычно нижний предел равен 170 В, а верхний – 265 В. Пороги определяются в заводских условиях, и изменить их самостоятельно невозможно. Эти приборы стоят дешевле. Но перед покупкой необходимо удостовериться, что такой допустимый диапазон соответствует эксплуатационным условиям.

Общие рекомендации по установке реле контроля напряжения

РКН являются достаточно дорогими устройствами, поэтому при их монтаже необходимо соблюдать несколько условий, среди них:

  • Установка перед РКН автоматического выключателя стандартного исполнения, токовая нагрузка которого ниже максимальной токовой нагрузки реле напряжения на 20 %. Эта мера обеспечивает защиту прибора от короткого замыкания.
  • Использование в комплексе с реле дополнительных защитных устройств – УЗО и стабилизаторов.
  • При стационарной установке – обеспечение доступа для осмотра, обслуживания и параметрирования прибора.

Схемы подключения однофазных реле контроля напряжения

В зависимости от производителя РКН могут иметь разные варианты подключения. Перед тем как подключить реле контроля напряжения необходимо ознакомиться со схемой, указанной в инструкции или на его корпусе.

Однофазные реле обычно подключают в электросеть напрямую, то есть через их контакты протекает рабочий ток электросети. РКН монтируют в разрыве между электрическим счетчиком и группой потребителей. Для защиты от сверхтоков перед ним устанавливают дифавтомат. До прибора учета устанавливают вводный автомат, поэтому проведение монтажных работ при выключенном вводном АВ совершенно безопасно.

Этапы работ:

  • Обесточить электросеть с помощью вводного автоматического выключателя. Для контроля отсутствия напряжения используют индикаторную отвертку.
  • Установить РКН на DIN-рейку, защелкнуть фиксатор, проверить надежность удерживания прибора.
  • Зачистить концы разрыва проводов, идущих от счетчика к нагрузкам.
  • Закрепить провода, идущие от прибора учета, на штатных местах в верхней части РКН. Это – «фаза» и «ноль».
  • Провод «фаза», идущий к потребителям, закрепляется на штатное место внизу прибора.
  • Включить вводный автоматический выключатель и убедиться с помощью индикаторной отвертки, что напряжение поступает на вход реле.
  • Включить РКН и выставить пороговые значения и время задержки включения.

Схема подключения трехфазных РКН в электрическую цепь

Трехфазные реле контроля напряжения могут подключаться двумя способами:

  • Напрямую. В этом случае потребители в нештатных ситуациях отключаются контактами самого реле.
  • Опосредовано. Такая схема подключения предусматривает прохождение рабочего тока через контакты не реле, а управляемого им магнитного пускателя. После магнитного пускателя устанавливаются одно- и трехполюсные автоматы, с помощью которых нагрузки разделяют на группы. Опосредованная схема подключения применяется в случаях обслуживания высокомощных нагрузок.

Проверка работоспособности реле контроля напряжения

Простых домашних способов проверки РКН на исправность не существует. Для того чтобы проверить реле контроля напряжения на работоспособность, в лабораторных условиях создают схему с имитацией нагрузки способом регулирования подаваемого напряжения. Прибор должен срабатывать на установленных пороговых значениях.

Импульсное перенапряжение

Существует еще такое понятие как импульсное перенапряжение в сети. Импульсное перенапряжение – это очень резкий и очень кратковременный скачек напряжения в сети, который длится доли секунды, но за это время может успеть испортить проводку и электроприборы. Особенно опасным может оказаться такой скачок для домашней сети в частном доме. От этого защищают специальные приборы – устройства защиты от импульсных перенапряжений.

Причиной импульсного скачка напряжение может стать:

  • Коммутационная перегрузка.
  • Удар молнии в молниезащиту.

В любом из этих случаев поможет УЗИП. Их активно используют для защиты от перепадов сети частного дома. Устройства бывают:

  • Одновводными.
  • Двухвводными.

В зависимости от типа нелинейного элемента они бывают:

  • Коммутирующими.
  • Ограничивающими сетевое напряжение.
  • Комбинированными.

Принцип работы у каждого вида разный. Коммутирующие защитные аппараты характеризуются высоким сопротивлением. При резком скачке напряжения в электросети сопротивление моментально падает до минимума. Ограничивающие УЗИП – ограничители сетевого перенапряжения – тоже имеют высокое сопротивление. Но отличительный принцип работы их – в плавном снижении сопротивления по мере роста напряжения. Как только напряжение становится больше допустимого, сила тока резко возрастает. После сглаживания электрического импульса ОПН возвращается в исходное состояние.

Импульсный скачок напряжения – серьезная угроза для крупных объектов и жилых домов. Существует три ступени защиты от этой угрозы. Аппараты для защиты от ИП, соответственно, делятся на три класса:

  • I класс – устройства, устанавливаемые на щите и обеспечивают защиту от разряда молнии.
  • II класса – устройства, обеспечивающие защиту от повреждений электросетей после удара молнии или скачком напряжения по причине коммутации.
  • Аппараты III класса используются для защиты отдельно стоящих домов. Это последняя защита, которая сглаживает остаточное перенапряжение. Устройства представляют собой специальные электророзетки.

Все три класса, примененные вместе, обеспечивают трехступенчатую защиту объекта. В отличие от УЗО, эти приборы не считаются обязательными, однако повышают уровень защиты от неожиданностей и степень безопасности для дома и жильцов. Подключение аппаратов защиты от ИП требует учета существующей заземляющей схемы и характеристик системы электроснабжения.

Принимая решение о применении тех или иных средств защиты от скачков напряжения лучше советоваться с опытным электриком.

Виды изменений в сети


График допустимых показаний отклонения в сети Выделяют несколько типов скачков напряжения:

  • Отклонения. Здесь подразумевается изменение амплитуды, длительность каждой из которых составляет больше 60 сек. Причем есть нормально допустимое и предельно дозволенное отклонения. Во втором случае нормой считается показатель не больше 10% от нормального.
  • Колебания (падение напряжения). Здесь амплитуда меняется в меньшую сторону и составляет до 60 сек. Также нормальным считается показатель до 10% от оптимального.
  • Перенапряжение. Это резкое увеличение тока выше отметки 242 Вольт. Длительность таких скачков до 1 сек.

Перенапряжение в сети

Для начала определимся с вопросом: “Что собой представляют перенапряжения в сети?”   Перенапряжения в сети – это результат аварии или избытка электроэнергии, связанного с ее неравномерным потреблением. Длительная работа при повышенном напряжении ускоряет расход ресурса аппаратуры, а значительное превышение нормального уровня напряжения приводит к выходу из строя и возможному возгоранию.   Итак авария, избыток энергии – несколько туманно, но что кроется за этой формулировкой?   “Почему возникает перенапряжение в сети?”. Причин несколько. Выделим самые распространенные:  

Начнем с того, что к электросети переменного тока подключены не только вы один (ваша квартира/дом), а множество таких же как вы потребителей и, что немаловажно, еще и многие промышленные потребители. Казалось бы, какое влияние может один дом оказать на электросеть? Безусловно незначительное влияние

Тут сделаем отступление на тему “А как вообще я влияю на сеть?”: Представьте, что вся сеть — это огромный накопитель/распределитель энергии(Мега LC фильтр).  Итак Вы сидите дома, у Вас все приборы(вся бытовая техника) работает, в этот момент наш Мега LC-фильтр(с бесконечной, возможной подводимой мощностью) потребляет некий установившийся ток и распределяет его на множество потребителей

Все замечательно напряжение в сети 220В, и тут Вы выключаете всю свою технику — Вы мгновенно перестаете потреблять нужный Вам ток(нужную мощность), а Мега фильтр всё еще подпитывается установившейся мощностью, что происходит когда на конденсатор приходит больше энергии чем от него отбирается? — правильно на нем подскакивает напряжение. Итак, как мы уже убедились выше, каждый маломальский потребитель вносит в момент вкл/выкл оборудования (динамические переходные процессы) свой вклад в дисбаланс сетевого напряжения. А если одновременно с вами 1000 человек включат всю свою технику — тогда мы получаем некое перенапряжение, — но не стоит пугаться — оно все равно будет меньше допустимого   ГОСТ-ом   и все ваше оборудование продолжит работу в нормальном режиме.Другое дело, что если одновременно включит/выключит своё оборудование целый завод. Представляете какой скачок будет!!! Данный вариант возможен в районах, где вся инфраструктура завязана на один большой завод. Тогда возможно, что ваша техника сгорит. Не спешите это еще не все… описанное выше всего лишь одна из возможных причин перенапряжения.   Еще одна из причин бросков напряжения — это обрывы  сетевого провода или КЗ. Представьте города А, Б, и В, потребляли равную мощность и тут на линию электра передачи(ЛЭП), шедшую к городу А, упало дерево — обрыв как результат — скачок напряжения в сети и люди из городов Б и В теряют аппаратуру.   Причина  чисто Российского характера — выключили у вас в подъезде свет — вы позвонили в соответствующую тех. службу. Пришёл Вася электрик и щелкнул не тем тумблером, у вас в подъезде, подключив на фазу вместо 220В сеть 380В…Не надо смеяться, случай распространенный…   Последний, но не по значению, это скачки напряжения, вызванные грозовыми разрядами вблизи ЛЭП. Очень опасно — я настоятельно рекомендую, если у вас нет специального оборудовании для защиты от перенапряжений – выключать бытовую технику из сети во время грозы.

  Все вышесказанное для пунктов 1-2  тем хуже, чем меньше мощность сети.

Иногда возникает вопрос для кого опаснее перенапряжения – для жителей мегаполисов или для жителей маленьких городов и деревень. Оказывается, что опасно для  всех. Для горожан опасны пункты 1 и 3, а для деревень и дачных участков 2 и 4, хотя все относительно.

Итак, мы рассмотрели основные причины перенапряжений в сети, но легче от этого не становится, ведь техника уже сгорела, тогда читайте дальше.

Кто ответит за потерянную аппаратуру?

Как это ни парадоксально, несмотря на то, что поставщик электроэнергии обязуется обеспечивать вас напряжением установленного качества,  вы скорее всего не сможете получить компенсацию за утраченное оборудование.   Это связано с тем, что во первых в большинстве случаев поставщик электроэнергии гос. предприятие(сразу отпадают варианты т.к. выиграть суд у государства на территории этого государства это нонсенс), во вторых, как вы сможете доказать, что причина выхода из строя техники есть перенапряжение в сети, а не дефект техники.   Так что вывод весьма печален – на 99% вы ни с кого не возьмете денег за утраченное оборудование.      Что же делать, неужели каждый раз выкидывать технику? Конечно же нет. Существуют методы борьбы с перенапряжениями.

Реле защиты

Способ не из дорогих, стоимость реле-прерывателя в пределах 1,5 -3 тысячи рублей. Устройство размыкает цепь при скачках в электрической сети, когда это выходит за пределы допустимых норм. В России стандарты допускают лишь небольшую погрешность – до 10 процентов от установленного значения для однофазной сети (220В).

При обрыве проводов напряжение может зашкаливать до 400 В, что чревато последствиями для техники. Так вот реле «чувствует» эти перепады и мягко защищает приборы от резкого воздействия на них электротока. Когда параметры восстановятся, начнется нормальная подача электроэнергии, реле также мягко автоматически введет технику в рабочее состояние.

Если реле идет с дисплеем, его настраивают под конкретный прибор, а таймер поможет зафиксировать промежуток между выключением и включением, что очень важно, к примеру, при прерывании стирки в автоматической машине из-за перепада в энергоснабжении. Реле устанавливаются как в электрощит, так и на рейку для трех приборов, а могут быть приспособлены в розетку для одного только домашнего устройства

Реле устанавливаются как в электрощит, так и на рейку для трех приборов, а могут быть приспособлены в розетку для одного только домашнего устройства.

Советы по выбору

Покупку реле лучше всего осуществлять в специализированном магазине, в котором исключена возможность продажи не сертифицированной продукции. Стоимость на изделие зависит от нескольких факторов, основными из которых являются: тип прибора, наличие опций, производитель, технические параметры.

Важно перед покупкой определиться с необходимой мощностью устройства. Для этого суммируется вся планируемая к подключению нагрузка, и полученная цифра увеличивается на 15—20 процентов

Если подсчитать требуемую мощность по каким-то причинам не получается, то следует обратить внимание на силу тока, указанную на вводном автомате или приборе, стоящем на защищаемом участке цепи, и приобрести реле, превышающее это значение

Предпочтительнее будет покупка прибора с электронным способом настройки параметров. Механический способ менее удобен, но настройка производится обычно только сразу после установки. Поэтому этот параметр не очень критичный. А вот наличие в конструкции реле термозащиты очень желательно.

Стабилизаторы напряжения

Стабилизатор (нормализатор) напряжения применяется для поддержания стабильного и качественного напряжения в сети. Его назначение — поддерживать выходной сигнал на уровне 220 вольт, независимо от его уровня на входе. Стабилизатор не улучшает форму сигнала, не исправляет синусоиду, а только корректирует величину напряжения. При этом стоит заметить, что к стабилизаторам, вносящим изменение в синусоиду входного сигнала из-за своей конструкции, подключать приборы содержащие электродвигатели нельзя, так как это приводит к их перегреву.

Виды и их параметры

Стабилизаторы выпускаются с точной регулировкой, но с медленным реагированием на изменение входного сигнала (электромеханические) или с высокой скоростью реакции, но с погрешностью при подстройке уровня сигнала. Перед тем как подобрать себе вид оптимального нормализатора, необходимо померить уровень сигнала в сети. Измерения проводятся в разное время суток на протяжении недели.

Таким образом, определяется требуемый диапазон работы, а при возможности нужно исследовать, насколько быстро изменяется величина напряжения, и вид стабилизатора. Если величина изменяется медленно, оптимальным будет электромеханический тип. Если существуют резкие провалы, то ступенчатый. По принципу работы различают:

  1. Релейные. Основными радиоэлементами, входящими в состав такого типа устройств, являются многообмоточный трансформатор и мощные реле. При отклонениях сети от номинального напряжения происходит автоматическое переключение обмотки с использованием силового реле. Такой нормализатор характеризуется низкой ценой, но главный его недостаток в ступенчатой подстройке величины напряжения. При этом на выходе получается уже не чистая синусоида.
  2. Сервомоторные. Другое название — электромеханические. В работе используется автотрансформатор и двигатель, последним управляет система контроля. Обладает: низкой ценой, плавной регулировкой, компактными размерами и чистой синусоидой на выходе. К недостаткам относят шум и низкую скорость срабатывания.
  3. Инверторные. Действуют на основе двойного преобразования, сначала переменный ток в постоянный, а затем снова в переменный. Всё управление происходит с применением микроконтроллера. Работают в большом диапазоне входного сигнала с высокой скоростью реагирования. Обеспечивают защиту и от импульсных помех, но при этом являются самыми дорогими устройствами.
  4. Симисторные. Принцип работы такой же, как у релейного типа, но вместо механических узлов используются полупроводники, работающие в режиме ключа. Отличаются быстротой срабатывания и высоким коэффициентом полезного действия. При этом они совершенно бесшумные, но сложны в своих схемотехнических решениях.
  5. Феррорезонансные. Для бытового применения не используются, так как имеют большой вес и высокий уровень шума. Работают на эффекте феррорезонанса.

При изготовлении стабилизаторов используются различные методы достижения стабильного сигнала на выходе устройства. Любой нормализатор обязан поддерживать напряжение в допустимом диапазоне при его отклонении. Если отклонение составит большее значение, стабилизатор отключится и прервёт подачу электричества к подключённой нему нагрузке. Нормализаторы характеризуются такими параметрами:

  1. Максимальное входное напряжение. Это максимальный уровень сигнала, понижающийся стабилизатором до 220 вольт.
  2. Минимальное входное напряжение. Это минимальный уровень сигнала, повышающийся стабилизатором до 220 вольт.
  3. Выходное напряжение. Величина максимального выходного напряжения, подающегося со стабилизатора на нагрузку.
  4. Полная мощность. Пиковая мощность, которую может выдержать устройство, измеряется в ВА.
  5. Вид индикации. Может использоваться цифровой экран или аналоговые приборы.
  6. Тип. Принцип работы.
  7. Количество фаз. В зависимости от типа электропроводки бывают двух видов: однофазные и трёхфазные.

Как правильно защитить бытовую технику

Не стоит недооценивать важность защиты от скачков напряжения. Регулярные перепады в сети приводят в неисправное состояние электронику точного оборудования, выводят из строя реле и двигатели холодильников, морозильных камер

Часто даже способствуют сгоранию техники. Чтобы этого не случалось, нужно оборудовать дом надежными защитными приборами.

Реле контроля напряжения


Реле контроля напряжения трехфазное ZUBR 3F, 5А Такая защита от повышенного напряжения позволяет мгновенно отключать все приборы от сети. Устройство контролирует параметры Вольт и при их резком повышении блокирует подачу питания к бытовой технике. После того как сеть стабилизирует свою работу, аппарат снова включается в работу и запускает технику.

Различают точечные реле (вилки и переходники), а также устройства по типу автомата для установки на DIN-рейку к распределительному щитку. В первом случае аппараты контролируют и защищают отдельные бытовые приборы. Так сказать, являются индивидуальными. Второй вариант — это надежный автомат защиты от перепадов напряжения в сети для всего дома.

Стабилизатор напряжения


Релейный стабилизатор напряжения Такая защита по напряжению предполагает изменение параметров по Вольтам до тех пор, пока они не будут приведены к нормальному состоянию. К примеру, стиральная машина или телевизор, подключенные через стабилизатор, работают всегда на одном напряжении. Если аппарат улавливает резкий скачок, то пропускает к бытовой технике лишь нормальный показатель 220-230 В.

Главные технические параметры стабилизаторов — время реакции на скачок, точность стабилизации, диапазоны входного напряжения и уровень издаваемого шума.

Все устройства такого типа делят на несколько видов:

  • Релейные. Самые дешевые виды стабилизаторов. Имеют низкий уровень мощности. Если и используются до сих пор, то на отдельные бытовые устройства.
  • Электромеханические (их еще называют сервоприводными). Рабочие характеристики подобных аппаратов мало отличаются от стабилизаторов релейных. Единственная разница между первыми и вторыми – чуть более высокая цена.
  • Электронные. Подобные устройства собирают на базе симистора или тиристора. Такие стабилизаторы отличаются хорошей мощностью, долговечностью, точностью реакции на скачки напряжения. При максимально быстром своем действии электронные устройства обеспечивают надёжную защиту от перепадов напряжения.
  • Электронные двойного преобразования. Подобные стабилизаторы — самые дорогие из всех. При этом они хорошо защищают как отдельные бытовые приборы, так и всю электросеть в доме. Выделяют одно- и трехфазные устройства. Первые применяют в быту. Вторые — на крупных промышленных, коммерческих объектах. Стабилизаторы двойного преобразования способны сглаживать резкие перепады в диапазонах от 90 до 380 Вольт с отменной точностью.


Электромеханический


Электронный


Двойного преобразования

ИБП (источник бесперебойного питания)


Источник бесперебойного питания (ИБП) APC Back-UPS CS 650VA/400W Главная задача ИБП — не защита от высокого напряжения, а обеспечение автономного резервного электроснабжения при резких и непродолжительных отключениях энергии. Подобные аппараты особенно нужны в частных домах, если в поселке остро стоит проблема частого отключения света.

Есть также разновидность источника бесперебойного питания с функцией стабилизатора. Если случится резкий высокий скачок напряжения, такой ИБП способен мгновенно переключиться на резервное питание и выровнять параметры Вольт в сети до оптимальных.

Датчик перепадов напряжения


Сетевой фильтр MOST EHV 2м (белый) Это небольшое устройство, так же как и реле, контролирует скачки напряжения в сети. Но его монтируют сразу с УЗО (устройством защитного отключения). Если датчик выявляет нарушение сетевых параметров, он провоцирует утечку тока. В этом случае УЗО обнаруживает её и отключает питание на дом в аварийном режиме.

Ограничители перенапряжений

Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.

Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.

Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.

Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.

Разновидности РКН по другим параметрам

Помимо различий по типу питания эти устройства отличаются по ряду характеристик, определяющих способ их монтажа, и по функционалу.

Тип исполнения и габариты

В соответствии с этим признаком все выпускаемые промышленностью модели РКН делятся на три вида:

  • переходники типа «вилка-розетка»;
  • удлинители с несколькими гнездами (от одного до шести);
  • компактные выключатели, монтируемые на DIN-рейке в щитке.

Первые два варианта изделий применяются с целью защиты отдельных электроприборов или нескольких потребителей, объединенных в группы. Они подключаются к обычной сетевой розетке. Приборы третьего типа устанавливаются в электрический щит, в котором монтируются остальные устройства защиты.

Корпуса переходников и удлинители делаются достаточно удобными в пользовании. Производители стараются уменьшить их габариты насколько это возможно, чтобы они не портили своим видом интерьеры помещений.

База и дополнительные функции

По внутренней логике работы и электронной начинке все известные образцы РКН делятся на микропроцессорные изделия и приборы, изготовленные на базе цифровых компараторов. Первые из них стоят несколько дороже, но зато обеспечивают более точную и плавную регулировку нижнего и верхнего порогов срабатывания. Большинство из этих защитных устройств изготовлено на основе микропроцессоров и выделяется среди других изделий следующими особенностями:

  • наличие двух порогов срабатывания (Umax и Umin);
  • использование встроенных светодиодов, вмонтированных в панель прибора – по ним контролируется наличие напряжения на входе и выходе;
  • применение жидкокристаллического дисплея, на который выводятся значения допустимых пределов отклонений и действующего напряжения.

Все эти возможности заметно повышают функциональность устройств и упрощают работу с ними при установке в квартире или частном доме.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий