Типы грунтов
Прежде всего, нужно определить тип грунта. Для этого тщательно изучают состав почвы, полученный с помощью бура.
Использование свай позволяет соорудить надежное основание на торфяных почвах
Рассмотрим качественные характеристики грунтов:
- Песок считают крупным, если средний размер песчинок достигает размеров от 0,25 мм до 5 мм. Песчаное основание не подвержено пучинистости. Грунт такого типа при увеличении уровня влажности не меняет свой объём и не теряет своих свойств;
- Супесь – это песок с примесью глины не более 10%. Шар, скатанный из супеси, непластичен и легко разрушается от лёгкого надавливания. Высокое содержание песка в составе породы практически делает её непластичной. Малая пористость грунта положительно влияет на его стойкость к пучению;
- Суглинок формируется из смеси 70% песка и 30% глины. Раздавленный шар из суглинка, образует блин с трещинами по краям. Такое явление показывает то, что данный грунт обладает большой пористостью и подвержен пучению;
- Глина наиболее часто встречающееся грунтовое основание. Если в образце почвы содержание глинистых частиц составляет 30% и более, то породу определают, как глину. Раздавленный шар из глины образует сплошной блин без трещин и разрывов. Почва такого типа наиболее подвержена пучению при замерзании;
- Торф по своей сущности является грунтом органического происхождения, не обладающим несущей способностью. Строительство объектов на таких участках можно производить на винтовых сваях, при условии прохождения этих опор через торфяной слой к плотному грунту. Глубина залегания плотного основания является основным фактором при расчете длины винтовых свай.
Как рассчитать количество свай для фундамента
Правильный расчет количества используемых свай нуждается в предварительной геодезической разведке. Прежде всего, необходимо рассчитать уровень промерзания грунта в зимний период, учитывая, что данный показатель отличается в разных регионах. Для прочной установки сваи ее нижний конец должен находиться ниже этого уровня.
А также необходимо выяснить степень плотности слоев грунта. Чем выше плотность, тем меньшую глубину сваи следует закладывать на этапе проектирования. К примеру, для полускальных и крупноблочных пород она будет минимальной (но не меньше 0,5 метра), а для песчаных и глинистых грунтов придется углубляться по максимуму.
1. Вычисление потенциальной предельной нагрузки на сваи
Перед началом расчета количества свай для фундамента следует выяснить несущую способность отдельной сваи. Общий вид формулы выглядит следующим образом:
В этом случае W является искомой фактической несущей силой, Q – расчетное значение несущей силы, рассчитанное для отдельной сваи по материалу, размерам и характеристикам грунта; k – дополнительный «коэффициент надежности», расширяющий эксплуатационный запас фундамента.
2. Вычисление расчетной нагрузки на сваи
Далее нам необходимо найти параметр Q, без которого расчет свайного фундамента невозможен. Расчетная нагрузка определяется по формуле:
Где S равно площади поперечного сечения лопастей сваи, а Ro – это показатель грунтового сопротивления на глубине размещения лопастей. Сопротивление грунта можно брать из готовой таблицы:
Таблица 2
Что касается «коэффициента надежности» условного фундамента, его величина может варьироваться в пределах 1,2-1,7. Логично, что чем меньше коэффициент, тем ниже себестоимость фундамента на этапе проектирования, поскольку для достижения заданного значения несущей силы не потребуется использования большого количества свай. Чтобы уменьшить коэффициент следует провести качественный и достоверный анализ грунта на стройплощадке, привлекая специалистов.
3. Расчет нагрузки от конструкции здания
На завершающем этапе проектирования свайного фундамента проводится расчет количества свай. Для этого потребуется просуммировать все элементы конструкции здания: от капитальных стен и перекрытий, до стропильной системы и кровли. Провести точное вычисление всех компонентов довольно сложно, поэтому рекомендуем воспользоваться одним из специализированных калькуляторов. И также в калькулятор расчета вносятся эксплуатационные нагрузки, включающие предметы интерьера, мебель, бытовую технику и даже проживающих в доме людей.
4. Подсчет требуемого количества свай
Перед тем как рассчитать количество задействованных свай нам нужно получить на предыдущих этапах две величины: совокупную массу здания (M) и несущую способность сваи (W) умноженную на «коэффициент надежности». Значение несущей способности можно взять из Таблицы 1. Итак, если масса равна 58 тонн, а скорректированная несущая способность сваи СВС-108 равна 3,9 тонн, то:
Как показал пример расчета, для дома весом в 58 тонн потребуется 15 свай марки СВС-180. Следует отметить, что это значение приблизительно и не учитывает правила точного распределения свай согласно СНиП:
- Первые должны быть установлены в точках пересечения несущих конструкций;
- Остальные монтируются равномерно между обозначенными углами;
- Минимальное расстояние между отдельными сваями 3 метра;
5. Глубина установки свай и расстояние между ними
Базовое значение глубины установки сваи рассчитывается исходя из глубины промерзания грунта в конкретно регионе, плюс 25 сантиметров. И также перед тем как рассчитать свайный фундамент, необходимо выяснить:
- Уровень прочности сваи по материалу и конструкции;
- Несущую способность грунта;
- Провести расчет осадки свайного фундамента, со временем возникающей под нагрузкой здания;
- Дополнительные параметры (температурный режим в течение года, объем осадков, нагрузки от ветра и др.).
Где можно класть пол на грунт
Класть пол допускается не на каждый грунт:
- Основание должно быть хорошо уплотнено и выровнено. В противном случае со временем грунт осядет, стяжка пола повиснет в воздухе и со временем начнет разрушаться;
- Основанием служат грунты, не подверженные пучению;
- Не стоит укладывать пол на подвижные грунты.
Существует 2 вида пола по грунту:
- Связанная плита стяжки. Жестко крепится к ленточному фундаменту, опирается на него. Пол не даст усадки, отделка не пострадает при незначительных изменениях грунтов;
- Несвязанная. Стяжка не будет покрываться трещинами во время усадки, но при последующей эксплуатации отделка может повредиться из-за взаимного движения стен и пола.
При расчете учитывается временное и постоянное давление на всю поверхность пола. В первом случае нагрузка составит 150 кг/м2 (вес людей и мебели), во втором нагрузка зависит от используемых материалов.
Пример подсчёта потребности в сваях
Для примера расчёта возьмём одноэтажный дачный дом:
- с крышей из металлочерепицы;
- стены бревенчатые;
- перекрытия деревянные;
- размер 6 Х 6 м;
- без фундаментальной печи;
- высота стен 2,4 м.
Расчет:
- вес стен из бревна: 2,4 (высота) Х 24 (периметр) Х 600 = 34560;
- вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;
- вес крыши: 54 (площадь) * 20 = 1080;
- полезная нагрузка: 100 Х 36 = 3600.
Сборный вес дома: 34560+7200+1080+3600=46440 кг.
Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кг\м2. Отсюда расчет равен: 6х6х190=6840 кг.
Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.
Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук винтовых свай.
Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.
Получение данных с помощью онлайн-калькуляторов
Поскольку расчет силовой конструкции – достаточно трудоемкий процесс, то частично можно упростить задачу, воспользовавшись специализированными сервисами и онлайн-калькуляторами.
Среди всех существующих сайтов большей популярностью пользуются следующие порталы:
moi-domostroi.ru – простой калькулятор веса дома. Для расчета понадобится знать форму дома, размеры всех конструктивных элементов, виды строительных материалов, тип крыши, уточнить регион.
- gvozdem.ru – сервис для определения количества опорных элементов. Позволяет узнать потребность в бетоне и арматуре, зная параметры сваи.
- screw-piles.ru – сервис для определения потребности в сваях, исходя из особенностей конструкции и типа грунта.
Способы вычисления несущей способности по различным параметрам
Несущая способность сваи зависит от целого ряда параметров. Главные из них – материал опоры и виды грунта, с которыми она контактирует при заглублении. Опираясь на данные характеристики можно легко рассчитать необходимое количество элементов свайного фундамента и их геометрические параметры.
Свайные фундаменты
Среди получивших наибольшее распространение в частном домостроении можно выделить следующие свайные фундаменты:
- На винтовых сваях;
- На забивных опорах;
- С помощью буронабивных свай.
Каждый вариант хорош в тех или иных случаях и может использоваться при строительстве зданий различной конструкции и этажности.
Расчет фундамента на винтовых сваях
Винтовые сваи представляют собой стальные трубчатые опоры, оснащенные в нижней части лопастями, облегчающими процесс внедрения в грунт. Для строительства домов используют элементы диаметром 133, 108 и 89 мм. Более тонкие сваи можно применять для монтажа легких конструкций типа беседок и террас.
Фундамент на винтовых сваях
Несущая способность сваи с лопастями зависит от следующих параметров опоры:
- Диаметра трубы;
- Длины трубы, погруженной в почву;
- Диаметра лопастей, распределяющих конечную нагрузку на грунт.
Даже трубы самого большого диаметра не позволяют использовать их для строений из таких сравнительно тяжелых строительных материалов, как кирпич и бетонные стеновые блоки. Для соответствия нагрузке дома даже на таких мощных почвах, как глиняные шаг установки винтовых свай может составлять 0,3 метра, что невыгодно с точки зрения технологии и экономики строительства.
Особенности фундамента на забивных сваях
Максимально возможная несущая способность забивной сваи позволяет широко использовать подобный вид фундаментов даже при строительстве многоэтажных жилых домов. Это способствует их распространению при возведении конструкций высотой до 40-60 метров.
Применение специализированной строительной техники позволяет использовать опоры, длина боковой поверхности которой может составлять десятки метров. Забитая свая нижним концом опирается на высокопрочные скальные породы, передавая им нагрузку от конструкции дома. Прочность материала опоры достаточна для сохранения ее целостности под такой высокой нагрузкой.
В частном домостроении фундамент на забивных сваях распространен очень слабо. Связано это с высокой стоимостью аренды пневматического забивного оборудования и его операторов. Только в крайних случаях строительные инженеры склоняются в пользу такого вида фундамента для двухэтажных частных домов.
Буронабивные сваи – оптимальный вариант фундамента
Буронабивные сваи аналогичны забивным, но монтаж тела опор осуществляется непосредственно на месте строительства. Для этого в грунте бурится отверстие, в которое опускается полая цилиндрическая опалубка в виде труб. Внутрь устанавливается стальной усиливающий каркас и полость заполняется бетоном. Для увеличения несущей способности сваи возможно изготовление ее нижнего конца в виде полусферического или конического расширения.
Важный аспект – материал, из которого изготовлена опора и способ ее изготовления. Максимальная величина характерна для железобетонных заводских стоек. Несущая способность сваи по материалу в расчетах характеризуется коэффициентами, величина которых определяется по соответствующим таблицам.
Фундамент на буронабивных сваях
В процессе бурения первого или пробного шурфа на месте строительства необходимо как можно тщательнее изучить имеющиеся слои грунта, ибо каждый из видов почв обладает различной несущей способностью сваи. Конкретные цифры по каждому виду почв легко найти в соответствующем ГОСТе, который называется «Грунты. Классификация». Эти величины учитывают, когда определяется несущая способность сваи по грунту.
Буронабивная свая, как и забивная, благодаря плотной посадке в почву нагрузку от конструкции дома передает не только своим нижним концом, но и по всей боковой поверхности. Это отличает их от свайных опор и служит неоспоримым преимуществом. Для более тщательного изучения технологии расчета несущей способности сваи рассмотрим ее на конкретном примере.
От чего зависит шаг?
Расстояние между ближайшими опорными элементами рассчитывается индивидуально, исходя из количества свай, их диаметра, схемы свайного поля, а также особенностей конструкции. Количества опор, а также их параметры выбирают, учитывая проектные нагрузки и несущую способность грунта.
Популярные схемы свайного поля:
- одинарные сваи – расставляют по углам конструкции и в местах, где на грунт действуют максимальные нагрузки;
- ленточное размещение – сваи устраивают по периметру на минимальном расстоянии;
- кустарное расположение – группы из нескольких опорных элементов расставляют в максимально нагруженных местах, при этом шаг не имеет значения;
- сплошное свайное поле – опорные столбы с шагом в 1 м расположены по всему периметру конструкции.
Определение прочностных характеристик грунта
на одном участке в пределах небольшой площади может быть несколько типов почвы.
Поэтому перед строительством сооружений I и II степени ответственности, в том числе жилых домов, необходимо заказать геологические изыскания застраиваемой площадки.
Альтернатива процедуры – самостоятельный анализ почвы. Для этого бурят в земле несколько шурфов, чтобы взять образцы для анализа.
Затем визуально или экспериментальным путем для каждого образца определяют тип почвы и выбирают из справочной литературы расчетное сопротивление грунта. Нормативный документ СП 22.13330.2016 содержит такие данные. Таблица ниже отражает значение искомых параметров для наиболее популярных грунтов в российских регионах:
Тип почвы | Расчетное сопротивление, кг/см2 |
Пылеватые породы | 2 |
Рыхлая почва с большим содержанием песка и глины | 3,5 |
Песок мелкой фракции, гравий с глинистыми включениями | 4 |
Галька с некоторым содержанием глины | 4,5 |
Песок средней фракции | 5 |
Глина, песок крупной фракции | 6 |
Прочность трубы на сжатие
Почему в качестве опор для строительства выбираются металлоконструкции в виде трубы? Она имеет замкнутый контур, что придает опоре повышенную жесткость по сравнению с открытыми контурами швеллера или уголка. При равной массе металла конструкция трубы жестче, следовательно, расходы на трубные опоры оказываются ниже.
Существуют методики определения жесткости тех или иных труб, позволяющие выбрать их в качестве опор свайного фундамента.
В результате расчетов оптимальными для возведения фундаментов признаны трубы, выполненные из конструкционных марок стали, диаметром от 73 до 300 мм, с толщиной стенки от 4 мм для самых мелких труб. Чаще всего берутся рядовые трубы со сталью 20, как наиболее распространенные на рынке.
Большое значение имеет замкнутость и надежность контура трубы
Важно отметить, что для свай рекомендовано использовать только бесшовные трубы
6.3 Расчет буронабивных свай
6.3.1 Расчеты свайных фундаментов и их элементов выполняются в
соответствии с общими положениями СП
24.13330.2011, МГСН 2.07-01
[], МГСН 5.02-99 [].
6.3.2 При расчете буронабивных свай из
виброштампованного бетона по прочности материала расчетное сопротивление бетона
следует принимать с учетом коэффициента условий работы γcb= 1 и коэффициента условий работы, учитывающего влияние
способа производства работ при наличии в скважине воды и извлекаемых обсадных
труб, γ’cb= 0,9.
6.3.3 Сваю в составе фундамента и одиночную по
несущей способности грунта основания следует рассчитывать исходя из условия
(1)
где N — расчетная вертикальная
нагрузка, передаваемая на сваю, кН;
Fd — несущая
способность (предельное сопротивление) грунта основания одиночной сваи, кН,
называемая в дальнейшем несущей способностью сваи;
γ, γn,
γk — коэффициенты, принимаемые согласно п.
7.1.11 СП 24.13330.2011.
6.3.4 Несущую способность Fd буронабивной
сваи, работающей на сжимающую нагрузку, следует определять по формулам:
а) при объемном
виброштамповании укладываемой бетонной смеси
Fd = γc(γcRRA
+ UΣγcffihi), (2)
где γс — коэффициент условий работы
сваи, γc = 1;
γcR — коэффициент условий работы грунта под нижним концом сваи (для
песков и супесей γcR = 1,1; для глин и суглинков
γcR = 1; в остальных случаях, согласно п. 7.2.6 СП
24.13330.2011);
R — расчетное сопротивление грунта под нижним концом сваи, кПа,
принимаемое, согласно п. 7.2.7 СП
24.13330.2011;
А — площадь опирания сваи, м2,
принимаемая равной:
— для буронабивных свай без уширения —
площади поперечного сечения ствола сваи в уровне подошвы;
— для буронабивных свай с уширением —
площади поперечного сечения уширения в месте наибольшего его диаметра;
U — периметр поперечного сечения ствола сваи, м;
γcf — коэффициент условий работы грунта на
боковой поверхности сваи (для любого типа грунта γcf = 0,9);
fi — расчетное сопротивление i-го слоя грунта на боковой
поверхности сваи, кПа, принимаемое по таблице приложения ;
hi — толщина i-го слоя грунта,
соприкасающегося с боковой поверхностью сваи, м;
б) при вибровтрамбовывании
щебня в грунт ниже забоя скважины или сваи-оболочки, погружаемой с выемкой
грунта
Fd = γc(γcR1RA + UΣγcffihi), (3)
где γс — коэффициент условий работы сваи, γс = 1;
γcR1 — коэффициент условий работы, учитывающий особенности совместной
работы щебеночного «ядра» в основании сваи и окружающего уплотненного грунта,
принимаемый по таблице ;
R — расчетное сопротивление уплотненного грунта под подошвой
буронабивных свай, сооружаемых с вибровтрамбовыванием жесткого материала в
забой, кПа, принимаемое по таблице
приложения ;
А — площадь опирания сваи, м2,
принимаемая равной:
— для буронабивных свай без уширения —
площади поперечного сечения ствола сваи в уровне подошвы;
— для свай-оболочек, заполняемых бетоном, —
площади поперечного сечения оболочки брутто;
U — периметр поперечного сечения ствола сваи, м;
γcf — коэффициент условий работы грунта на боковой поверхности
сваи, принимаемый:
— при объемном виброштамповании укладываемой
бетонной смеси (для любого типа грунта γсf = 0,9);
— в остальных случаях, согласно п. 7.2.6 СП
24.13330.2011 в зависимости от способа образования скважины и условий
бетонирования;
fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое
по таблице приложения ;
hi — толщина i-го
слоя грунта, соприкасающегося с боковой поверхностью сваи, м.
Таблица 1 — Значения коэффициента γcR1
Значение коэффициента для пылевато-глинистых грунтов | |||||||
0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | ||
для песчаных грунтов | |||||||
гравелистых | крупных | — | средней крупности | мелких | пылеватых | — | |
Пески средней плотности | — | — | — | 0,8 | 1,0 | 1,1 | — |
Супеси, суглинки и глины | — | — | 0,8 | 0,9 | 1,0 | 1,1 | 1,2 |
Примечания
1 Для
промежуточных значений IL значения коэффициента γcR1 определяются интерполяцией.
2 Для гравелистых, крупных
песчаных и пылевато-глинистых грунтов с показателем текучести IL < 0,2 определение
сопротивлений производится по результатам опытных работ. Для предварительной
оценки сопротивления основания под нижним концом сваи по формуле () допускаются принимать γcR1 =
0,5.
6.3.5 При определении несущей способности
буросекущихся и бурокасательных свай, воспринимающих сжимающую нагрузку в составе
конструкций типа «стена в грунте», следует учитывать уменьшение трения грунта
на боковой поверхности сваи, вызванное объединением сечений соседних свай в
ряду.
Вычисление с помощью программ
Исходя из вышеизложенного очевидно, что самостоятельно провести расчеты достаточно сложно.
На практике можно воспользоваться онлайн-ресурсами:
- Сервис для расчета размеров силовой конструкции, выбора характеристик арматуры, а также определения потребностей в расходуемом бетоне.
- Онлайн-калькулятор. Программа помогает выбрать количество и качество арматуры, узнать необходимый объем бетона. Для этого нужно ввести в соответствующие поля такие исходные параметры как: марка бетона, количество свай и т.д.
- Программа для расчета просадки основания методом послойного суммирования.
Алгоритм расчета свайного фундамента с ростверком
Вычисление полезных нагрузок
Полезная нагрузка – это сумма веса мебели, людей, половых покрытий, бытовых приборов, облицовок. Рассчитывается приблизительно, согласно нормам колеблется между 100 и 200 кг. на единицу площади перекрытия помещения.
S – совокупная площадь перекрытия дома.
Вычисление снеговых нагрузок
Карта снеговых нагрузок для расчета
Снеговая нагрузка – давление на поверхность кровли снежного покрова. Нормативное снеговое давление определено для каждого региона индивидуально. Например, С. Н в Иркутске колеблется между 392 кг/м 2 и 560 кг/м 2 .
N – вес снегового покрова;
S – площадь кровли здания.
Вычисление массы здания
Масса здания – сумма веса элементов дома: стен, стропильной системы, перекрытий, кровли, стяжки.
M – масса строения;
m – удельный вес элемента.
V = усредненный вес 1 м 2 стройматериала;
S = площадь элемента.
Пример составления сводки для вычисления массы здания:
Элемент | Вес, кг/м 2 |
Кирпичные стены (150 мм) | 220-270 |
Железобетонное перекрытие | 500 |
Рубероидное покрытие | 20-50 |
Вычисление совокупных нагрузок
Совокупные нагрузки – это сумма воздействий на опоры.
С. Н = (М + П.Н + С. Н) * К.Н
К. Н – коэффициент надежности, соответствующий предельному состоянию. Прописан в своде правил №2.01.07-85*. Например, для жилых зданий – 1,2.
Вычисление грузонесущей способности сваи
Грузонесущая способность – это давление, которое выдерживает опора. Высчитывается по данным исследования грунта, например, основываясь на сопротивлении почвы.
- Fdf = u * ∑ Ycr * Fi * Hi;
- Fdr = Ycr * R * A;
- Fd = Ycr * (Fdf + Fdr).
Fd – грузонесущая способность сваи;
Ycr — коэффициент работы столба в почве после заложения (=1);
u – внешний периметр сечения опоры;
Fi – сопротивление грунта у боковой стенки столба;
Hi – толщина грунта, соприкасающаяся с боковой стенкой опоры;
R – нормативное сопротивление почвы под основой столба;
А – площадь опоры.
Расчет количества свай ростверкового фундамента
Количество свай – минимальное число опор, поддерживающих сооружение.
В обязательном порядке опоры устанавливаются на углах дома, а также в местах стыковки стен. Расстояние между столбами свайно-ростверкового фундамента — 2-2,5 м.
n – количество столбов
Вычисление длины свай
Длина сваи – глубина заложения стержня, необходимая для устойчивого положения основания конструкции. Высчитывается по данным исследования грунта, например, основываясь на высоте пластов.
Расчет ростверка свайного фундамента
Ростверк – железобетонная рама, которая соединяет верхнюю часть столбов, а также служит опорной конструкцией для несущих элементов здания.
Расчет свайного фундамента с ростверком выполняется в соответствии с предельными состояниями. Предельное состояние – состояние, при котором конструкция получает необратимую деформацию или локальное повреждение, а также не способна сопротивляться внешним воздействиям. Классификация пределов:
- 1 группа: несущая способность грунта, прочность материалов свай и обвязки, глубина заложения;
- 2 группа: усадки, повороты опор и контактной почвы под воздействием внешних факторов, например, мерзлоты.
Согласно вышеуказанной классификации и сборникам правил №2.17.77, №2.03.01 размер обвязки и глубина ее заложения рассчитываются по формулам:
- Fаi ≤ Rbt * h01 * ∑ Uі * Ві – устойчивость к продавливанию угловой опорой.
- Мхі = ∑ Fі * Хі – Мfx – устойчивость к изгибам.
- Q ≤ 1.5 * b * Ho * Rbt * – устойчивость к поперечному давлению.
Fаi – нормативное давление на угловую сваю;
Rbt – сопротивление рамы к растяжению;
h01 – глубина заложения обвязки на угловой опоре;
Uі – сила давления опоры на раму;
Ві = К * (Hоі / Соі) – расчетный коэффициент (свод №2.03.01);
Мхі – изгибающие моменты, действующие на ростверк;
Fі – нормативная нагрузка на столбы;
Хі – расстояние между осями опор и нижней гранью рамы;
Мfx – изгибающие факторы местного типа, действующие на обвязку;
Q – нормативная устойчивость столбов вне рамы (испытывают наибольшее поперечное давление);
b – ширина ростверка свайного фундамента;
Ho – глубина заложения ростверка в свайном фундаменте.
Расчет свайного фундамента с ростверком производят согласно рекомендациям сборников №2.01.07-85*, №2.02.01-83, №2.17.77, №2.03.01.
Расчет несущей способности по грунту
Несущая способность — это значение, необходимое для выполнения правильных расчетов. Выполнить расчет можно с помощью нескольких методов.
Предварительный теоретический расчет по формуле Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li), где:
- А — площадь опирания на грунт нижней части единицы конструкции;
- Yc, Ycr, Ycri — коэффициенты, учитывающие условия работы фундамента, основания, сил трения;
- U — периметр разреза сваи;
- fi — сила трения на боковых стенках;
- R — величина несущей способности грунта в месте опирания;
- li — длина боковых частей.
Метод статических нагрузок — это комплекс полевых работ, связанных с практическим нахождением несущей способности.
наиболее точный метод
- На площадке устанавливают пробную сваю;
- Дают конструкции набраться прочности в течение положенного срока;
- Установленный на сваю ступенчатый домкрат передает на нее нагрузку;
- Специальный прибор замеряет усадку сваи;
- На основе полученных данных проводятся расчеты.
Метод динамической нагрузки -на уже установленный свайный фундамент передают ударную нагрузку и после каждого удара определяют усадку и проводят необходимые расчеты.
Метод зондирования — пробную сваю оснащают датчиками, погружают на расчетную глубину и определяют сопротивление грунтов.
После выполнения теоретического расчета необходимо дополнительно выполнить одно или несколько полевых испытаний и дополнительных расчетов на их основании. Это поможет проверить правильность расчетов и изысканий на практике.
Для упрощения расчетов инженерами был создан калькулятор несущей способности грунта с использованием макросов в Excel.
Он способен:
- Построить график изменения несущей способности;
- Разбить толщу пород на слои, основываясь на введенных данных;
- Найти коэффициент работы всей поверхности сваи;
- Учесть коэффициенты, уменьшающие несущую способность.
Виды опор и параметры допустимой тяжести
На текущей момент рынок предложений представлен различными типоразмерами винтовых свай, что позволяет выбрать подходящие опорные элементы под конкретные виды возводимых строений.
Площадь лепестковой подошвы – один из определяющих параметров, от которого зависит несущая способность фундамента. Величину рассчитывают по классической формуле:
В частном домостроении в большинстве случаев используют стержни диаметром 59-159 мм. Так, сваи, диаметр которых равен 89 мм, применяют для строительства веранд и беседок.
Сваи с большим диаметром трубы (108–159мм) подходят для строительства кирпичных построек, бань из бруса, одноэтажных домов и двухэтажных каркасных построек. Назначение некоторых свай с типичными параметрами отражены в таблице:
Диаметр ствола, мм | Длина сваи, м | Диаметр винта, мм | Толщина стенки, мм | Несущая способность одной сваи, т | Назначение фундамента |
54, 76 | 1,5–4 | 150–200 | 2–3 | 0,8–2,5 | опоры для ограждений, беседок, террас |
54–89 | 2–3 | 150–200 | 2–3 | 2,5–4 | опорные стенки для борьбы с оползанием грунта |
89–108 | 1,5–4 | 200–250 | 3–4 | 2–7 | для уселения проблемных фундаментов |
89–108 | 2–4 | 200–250 | 3–4 | 4–7 | для усилия причалов |
89–114 | 2–4 | 200–300 | 3–5 | 4–8 | в качестве фундамента для деревянных, каркасных, кирпичных, щитовых домов, бань, хозблоков и других легковесных построек |
108–168 | 2–4 | 200–300 | 3,5–3 | 5–9 | в качестве опорных элементов для фундамента, усиленного ростверком |
Винтовые сваи с большим диаметром трубы (до 325мм) характеризуются высокими допустимыми нагрузками, что позволяет их использовать для строительства тяжелых конструкций, в том числе промышленных объектов.
Длину столба выбирают, зная глубину промерзания грунта. Для большинства российских регионов для почвы характерна точка промерзания, равная 1,5 м. Поэтому сваи длиной 2–2,5 м (с учетом высоты цоколя) считаются традиционными.