Когда и зачем необходимо использовать метод вдавливания свай

Какие разновидности бывают по способу погружения?

Сваи – силовые элементы фундамента, воспринимающие давление от конструкции и передающие его на несущий пласт, который может находиться на значительной глубине (до 30 м). Как правило, выше несущего пласта расположены нестабильные, слабые и перенасыщенные влагой слои почвы.

Эта особенность позволяет возводить дома и другие сооружения не только на твердой почве, но также на заболоченных местах и на открытой воде. Сваи могут быть погружены строго в вертикальном положении или под проектным углом.

Свайным фундамент называют группу опор, объединенных между собой ростверком – специальной конструкцией, которая удерживает основание дома и отвечает за равномерное распределение веса по всем подземным силовым элементам.

Забивные

Забивные сваи представляют собой готовые столбы, изготовленные в заводских условиях. По материалу изготовления силовые элементы делятся на типы:

  • железобетонные;
  • металлические;
  • деревянные.

Для строительства тяжеловесных и многоэтажных зданий используют железобетонные столбы, легковесных домов в один или два этажа – металлические и деревянные.

В большинстве случаев забивные опоры имеют квадратное сечение со стороной от 150 до 500 мм.

Длина изделий редко превышает 25 м. Нижней конца столба заострен или имеет пирамидоидальную форму, благодаря чему легче преодолевает сопротивление грунта. Удары дизель-молота забивная опора воспринимает верхней торцевой частью, усиленной оголовком. Погружение в грунт ведут до тех пор, пока нижний конец не упрется в плотную породу до предела.

Преимущества изделий:

  • значительная грузоподъемность;
  • продолжительный срок службы;
  • отсутствие необходимости подготавливать скважины.

Минусы технологии: недостаточная надежность при строительстве на просадочных грунтах и неравномерная осадка в местах, где почва характеризуется различной плотностью.

Буроопускные

Согласно буроопускной технологии, силовые элементы погружаются в заранее подготовленные шурфы, при этом диаметр скважин должен превышать размер сечения опор на 5–10 см. После погружения пространство между грунтом и землей заполняют связующим раствором, который после застывания увеличивает прочность конструкции.

Метод применяют при строительстве на твердомерзлой и пластично-мерзлой почве. Фундаментные работы ведутся при температуре окружающей среды не ниже 0,5оС.

Свайно-винтовые

Отличительной особенностью таких свай является оснащение конструкции винтовыми лопастями, благодаря чему изделия вкручивают в грунт, а не забивают.

Лопасти в процессе погружения дополнительно уплотняют почву, повышая несущую способность основания.

По материалу изготовления винтовые сваи делятся на железобетонные и стальные конструкции. Первый тип опор отличается повышенной несущей способностью, поэтому применяется при строительстве кирпичных и других тяжеловесных сооружений.

Металлические винтовые сваи изготавливают из стальных труб с диаметром сечения от 57 мм. Для строительства жилых домов (каркасно-щитовых, деревянных, из пенобетона) подходят стержни диаметром 108 мм и размахом лопасти 250–350 мм.

Буронабивные

Буронабивная методика применяется для строительства тяжелых сооружений на грунтах, которые характеризуются слабой несущей способностью. Силовые элементы создаются непосредственно на рабочей площадке.

В заранее подготовленной скважине устраивают утрамбованную песчаную подушку. Затем в шурф помещают обсадную трубу, армирующий каркас и заливают конструкцию бетоном. Буронабивная технология считается самой сложной, поскольку достоверно рассчитать грузоподъемность такого основания практически невозможно. При этом фундаментные работы можно провести самому без использования спецтехники.

Комбинированные

Данный тип свай относится к специальным конструкциям, поскольку сочетает сразу несколько технологий, чтобы удовлетворить исходным инженерно-геологическим условиям.

Например, когда несущий пласт находится предельно глубоко, то комбинируют забивную и буронабивную методики.

Монтаж выглядит следующим образом:

  1. Вначале способом лидерного бурения в грунте устраивают шурф, куда помещают обсадную трубу.
  2. Затем дизель-молотом забивают железобетонную опору.
  3. Когда конец изделия упрется в плотный грунт, сверху закладывают монолитную конструкцию путем армирования и бетонирования скважины.

Преимущества и недостатки


Свайная технология фактически не обладает недостатками. Самыми значимыми достоинствами такой технологии считаются:

  • значительная материалоемкость — при заглублении опор уплотняется окружающая их почва, благодаря этому увеличивается надежность основания и снижается цена строительства;
  • методика делает возможным мониторинг работ на компьютере — определяется проектная нагрузка для всех опор по отдельности, что увеличивает качество и прочность основания;
  • небольшая энергоемкость работ — поскольку будет использована электрическая энергия, а не горючие либо смазочные материалы;
  • возможность монтажа основания в любую почву;
  • возможность снизить время на монтаж опор вдавливанием;
  • повышение прочности основания в процессе применения технологии погружения — для осуществления применяют элементы заводского производства, что предупреждает нарушение целостности свай при вдавливании;
  • отсутствуют ударные и вибронагрузки на почву;
  • невысокий уровень шума во время работ.

Вдавливание свай обладает рядом недочетов:

  • технология непригодна для скального грунта;
  • цена вдавливания 1 погонного метра, преимущественно выше, чем во время применения забивных свай;
  • чтобы доставить оборудование, потребуется много техники, что увеличит цену перевозки.

Вдавливание свай даст возможность возводить основание рядом с жилыми строениями и прочими сооружениями. В особенности, где монтаж с помощью вибропогружения либо ударного метода невозможны.

Оборудование, производящее статическое вдавливание свай

Не все знают, как называется машина, которая статически вдавливает элементы свайного фундамента. Процесс силового погружения конструктивных элементов фундамента в грунт осуществляется специальным оборудованием:

  • сваевдавливающими машинами, известными также как гидравлические копры. Оборудование не нуждается во вспомогательных механизмах и функционирует самостоятельно. Поставляется на строительную площадку в разобранном виде и собирается из отдельных агрегатов. Конструкция позволяет выполнять поставленные задачи и перемещаться по свайному полю, имеющему наклон до 15%;
  • сваевдавливающими установками. Агрегат конструктивно отличается от сваевдавливающей машины, имеет невысокую стоимость. Он циклически перемещается на следующую позицию с помощью специального оборудования. Установка может монтироваться на самоходное шасси, что сокращает строительный цикл. Требует подготовки площадки и обеспечения горизонтальности.

Повышенную эффективность выполнения работ обеспечивает гидравлический копер, включающий следующие конструктивные элементы:

  1. Опорную раму, выполняющую функцию подвижного шасси.
  2. Грузоподъемное устройство, обеспечивающее перемещение колонн к рабочему органу.
  3. Зажимной узел, осуществляющий фиксацию с помощью гидравлических захватов.
  4. Силовой блок, производящий статическое погружение элементов фундамента.
  5. Грузовую раму, необходимую для размещения анкерных грузов.
  6. Гидравлическую станцию, создающую требуемое давление для выполнения работ.

Машина более оперативно устанавливает конструкции, а также имеет гидравлические цилиндры, которые отлично справляются с погружением свай в площадку

Агрегаты статического погружения имеют ряд преимуществ:

  • не создают при работе шума и вибрации в отличие от установки, которая забивает опоры ударным или вибрационным способом;
  • отличаются повышенной производительностью, которую не может развить машина для забивания свай;
  • не требуют специальной подготовки строительной площадки, необходимой для формирования свайного поля;
  • позволяют выполнять работы на подвижных почвах с близким расположением водоносных слоев, где проблематично использовать другие технологии;
  • позволяют создать надежный свайный фундамент, используя меньшее количество опорных элементов;
  • обеспечивают целостность силовых опор, которые могут разрушаться при погружении ударным путем или вибропогружателем;
  • гарантируют повышенную точность углубления, контролируемую компьютерной системой.

К основным недостаткам относятся:

  1. Увеличенные габариты оборудования, не позволяющие производить работы на малых стройплощадках.
  2. Необходимость использования техники, доставляющей сваевдавливающее оборудование к месту работы.
  3. Повышенная стоимость вдавливания по сравнению с ударным или вибрационным методом.

Способы погружения свай в грунт

Способы установки свай и оборудование, нужное для этого, ― это два взаимосвязанных фактора. Рассмотрим способы установки:

  • — с применением сваебойных ударных машин;
  • — с применением вибропогружателей и вибромолотов;
  • — с применением машин вдавливающего действия;
  • — с применением машин смешанного действия.

Это перечень категорий машин для установки готовых свай, а ведь есть ещё установка буронабивных (буроиньекцонных) свай. Устройство и установка таких свай осуществляется на месте производства работ. По материалу изготовления они относятся к железобетонным, а устанавливаются они таким образом: бурится скважина, туда вставляется арматура и набивается бетон. Отвердение и высыхание таких свай происходит прямо в грунте.

В чем разница

Вроде бы действующий СП 24.13330.2011 «Свайные фундаменты» (п. 6.1) не делает разницы между работой в грунте вдавленных и забивных свай, однако они все же имеют неодинаковую несущую способность. Согласно таблице 7.4 того же СП при расчете свай вдавливания по боковой поверхности применяется коэффициент, который на 10% превышает таковой для забивных свай.

Величина погружения сваи при ударе во время забивки носит название «отказ». При забивке сваи в песчаные грунты величина отказа с глубиной быстро уменьшается и в некоторых случаях может достигнуть нуля. В данном случае под острием сваи образуется переуплотненное ядро, а вдоль ее ствола за счет отжатия воды возникает «сухое» трение. Отток воды от источника колебаний связан с хорошей фильтрующей способностью песков. В результате свая перестает погружаться, то есть ее отказ становится равным нулю. Для его увеличения свае необходимо предоставить отдых, т.е. остановить забивку на 3–5 дней. За это время в околосвайном пространстве восстанавливается поровое давление, под нижним концом происходит консолидация грунтов. В результате в процессе добивки сваю можно дальше забивать до проектной отметки.

При забивке в водонасыщенные глинистые грунты отказ может увеличиваться с глубиной и свая «проваливается». Это явление обусловлено тем, что колебательный контур сваи создает избыточное поровое давление и в глинистом грунте вдоль ее ствола формируются пленки воды, существенно снижающие трение, а за счет динамических (вибрационных) воздействий глина приобретает текучее состояние и низкую прочность. В результате при забивке величина отказа с глубиной или становится постоянной, или может увеличиваться. После отдыха сваи в течение 1–3 недель происходит консолидация грунта, при этом глина, имеющая высокий коэффициент сцепления, обволакивает тело сваи. Это явление, получившее название «засасывание сваи», зачастую приводит к увеличению ее несущей способности. Отметим, что отказ сваи во время забивки называется ложным, после отдыха – истинным.

При погружении сваи вдавливанием вышеописанных явлений не возникает. Поэтому применение понятия «отказ» при использовании данного метода применять некорректно. Основное преимущество этого способа заключается в том, что свая погружается в грунт в результате статического воздействия, поэтому усилие вдавливания фактически соответствует несущей способности сваи по грунту, не изменяя в процессе погружения его физико-механических характеристик.

Если дело касается забивных свай, то их статические испытания – это минимум неделя времени и четыре «выброшенных» анкерных сваи, поскольку нужно забить пять свай – одну испытываемую и четыре анкерных, которым для восстановления структуры грунтов, согласно требованиям ГОСТ 5686-2012, требуется дать отдых не менее 3–6 суток до начала испытаний.

Испытания же вдавливаемых свай тот же ГОСТ разрешает выполнять уже через сутки. Это связано с тем, что при их вдавливании не возникает вибраций и динамики и не нарушается природная структура глинистого грунта. А при вдавливании в песчаные отложения скорость вхождения в них сваи является постоянной, усилие – плавно нарастающим, что приводит к равномерному уплотнению грунтов основания, вытеснению поровой воды и не создает зон уплотнения, у которых при консолидации падает несущая способность (то есть не возникает «ложный отказ»).

Выбор методов погружения свай и сваепогружающего оборудования

При погружении свай основными факторами, определяющими выбор метода, являются физико-механические свойства грунта, объем свайных работ, вид свай, глубина погружения, производительность применяемых сваепогружающих установок и свайных погружателей.

Объемы работ чаще всего измеряют числом свай или метрами суммарной длины погруженной части свай, а шпунтового ряда – метрами длины шпунтового ряда той или иной глубины погружения. В соответствии с этим производительность оборудования измеряют за час или чаще за смену.

Усредненные данные о нормах времени на погружение свай различными установками для разных типов молотов и погружателей, а также составы рабочих звеньев приведены в ЕНиРах. Однако многообразие и сложность действующих факторов в большинстве случаев требуют установить общие зависимости для определенной скорости и продолжительности погружения свай в грунт для конкретных условий. Для этого выполняют пробное погружение свай в пределах площади свайного поля тем же оборудованием, которое предполагается использовать. По данным пробного погружения не менее чем пяти свай в различных местах участка устанавливают среднюю продолжительность погружения и расчетную производительность сваепогружающего оборудования для конкретных условий каждого объекта.

Тип выбираемой сваепогружающей установки во многом зависит от объема свайных работ. Это объясняется тем, что для копров башенного типа, мостовых сваебойных и некоторых других установок необходимы рельсовые пути, которые целесообразно укладывать только при большом числе погружаемых свай. Кроме того, монтаж копра является более трудоемким, чем подготовка мобильной установки.

Число машин, необходимых для выполнения свайных работ, определяют, исходя из эксплуатационной сменной производительности сваепогружающей установки:

Псм = 480 kв / ( t0 + tв ),

где kв – коэффициент использования установки по времени (можно принимать 0,9), 480 – продолжительность смены, мин, t0 – выполнение основной операции погружения свай, мин, tв – продолжительность вспомогательных операций, включая перемещение установки, мин.

Зная Псм и установленный срок производства свайных работ, получим необходимое число сваепогружающих установок:

N = s / ( Псм t),

где s – число свай в свайном сооружении, t – установленный срок производства свайных работ, см.

Для выбора сваепогружающих установок, исходя из годовой их выработки, в которой учтены затраты времени на ремонты, профилактику, демонтаж, монтаж и перебазировку машин, применяют метод, предусматривающий решение задачи в два этапа. На первом этапе определяют число сваепогружающих установок заданных параметров, на втором отбирают те типы установок, которые обеспечивают выполнение заданного объема работ с минимальными затратами.

  • Технология устройства набивных свай

Технология устройства ростверков

Контроль качества погружения и устройства свай

Технология погружения свай

Технология вдавливания железобетонных свай, шпунтов и труб состоит из следующих этапов

Подготовительный

Перед началом производства работ выполняется подготовка строительной площадки. В большинстве случаев достаточно выполнить черновое выравнивание, так как свае вдавливающие установки работают на уклонах и погружают сваи до проектной отметки на глубину до 10 м прямо с дневной отметки поверхности грунта. В случае необходимости устраивается котлован, размеры которого больше размера здания на технологическую ширину (1-3м), необходимую для погружения угловых свай и крайних свай, располагающихся возле бровки котлована.

Производственный

Технологический цикл вдавливания свай включает следующие операции: установка СВУ на точку вдавливания; загрузка СВУ тарированными грузами; строповка, подъём и загрузка погружаемых элементов в гидравлические зажимы вдавливающего устройства (кондуктора) СВУ с помощью встроенного крана-манипулятора; выравнивание установки гидроцилиндрами и центрирование сваи; вдавливание; переезд СВУ на отметку проектного положения следующей сваи. Сам процесс погружения свай и шпунтов выполняется свае вдавливающей машиной путем использованием двух или четырёх вращающихся зажимов стола, передающих вертикальную вдавливающую нагрузку на тело сваи, без её повреждения.

При работе сваевдавливающей установки усилие вдавливания контролируется оператором машины в диапазоне от 0 до 320 тонн. Кроме того, за счет применения тарированных при грузов возможно увеличить или снизить общий вес установки до требуемого проектной документацией значения расчетной нагрузки на сваю.

Давление в системе при погружении свай непрерывно контролируется машинистом установки с помощью поверенного прибора (манометра), установленного непосредственно в кабине оператора. Данная система позволяет использовать такие преимущества технологии вдавливания, как:

  • возможность погружения свай строго до заданного проектом усилия (отказа);
  • недопущение разрушения сваи по материалу, что часто происходит при забивки свай;
  • своевременное информирование и оперативное реагирование в случае попадания свай на линзы слабого грунта, что при производстве свай по другим технологиям выявляется только при выполнении контрольных испытаний свай по окончании производства работ и приводит к существенному удорожанию стоимости строительства.

За счет использования в гидравлическом устройстве кондуктора сменных зажимов свае вдавливающие установки погружают сваи следующих сечений: 300х300, 350х350 и 400×400 мм, а также сваи и трубы круглого сечения диаметром от 200 до 550 мм.

В настоящее время имеются следующие эффективные конструкции свай, применение которых возможно только методом вдавливания:

  • чрезвычайно экономичные сваи без поперечного армирования, разработанные в 1960 годах и долго не применявшиеся из-за высокого процента разрушения стволов при забивке;
  • сваи пирамидальные с небольшим (до 4 %) продольным уклоном граней, которые в ряде грунтовых условий обладают повышенной несущей способностью за счет возникающего распора;
  • сваи с переменным сечением по длине, которые особенно эффективны в грунтовых условиях второго типа по просадочности, а также в составе больших групп;
  • сборные железобетонные составные сваи с безметалльным стыком, которые на 10 % экономичнее традиционных;
  • комбинированные сваи с телескопическим строением ствола, позволяющие получать несущую способность в два-три раза более усилия вдавливания за счет их устройства по методу «top-down»;
  • сваи без острия, с минимальным продольным армированием, изготовленные безопалубочным методом из тяжелого бетона, которые на 25 % более экономичны, чем изготовленные традиционными методами.

Кроме того, СВУ, самостоятельно передвигаются по строительной площадке на полозьях («лапах») и выполняют работы с использованием встроенного крана-манипулятора, что позволяет достичь рекордной скорости погружения — до 60 железобетонных свай в смену. Очевидно, что технология погружения свай методом вдавливания является безусловным лидером в свайном фундаментостроении по качеству, надежности и скорости производства работ.

Вибрационный метод.

Метод основан на значительном уменьшении при вибрации коэффициента внутреннего трения в грунте и сил трения по боковой поверхности свай. Благодаря этому при вибрировании для погружения свай требуется усилий иногда в десятки раз меньше, чем при забивке. При этом наблюдается также частичное уплотнение грунта (виброуплотнение). Зона уплотнения составляет 1,5…3 диаметра сваи (в зависимости от вида грунта и его плотности).

При вибрационном методе сваю погружают с помощью специальных механизмов – вибропогружателей. Вибропогружатель, представляющий собой электромеханическую машину вибрационного действия, подвешивают к мачте сваепогружающей установки и соединяют со сваей наголовником.

Действие вибропогружателя основано на принципе, при котором вызываемые дебалансами вибратора горизонтальные центробежные силы взаимно ликвидируются, в то время как вертикальные суммируются.

Амплитуда колебаний и масса вибросистемы (вибропогружатель, наголовник и свая) должны обеспечить разрушение структуры грунта с необратимыми деформациями.

При выборе низкочастотных погружателей (420 кол/мин), применяемых при погружении тяжелых железобетонных свай и оболочек (трубчатых свай диаметром 1000 мм и более), необходимо, чтобы момент эксцентриков превышал вес вибросистемы не менее чем в 7 раз для легких грунтов и в 11 раз для средних и тяжелых фунтов.

При вибрационном погружении в глину или тяжелый суглинок под нижним концом сваи образуется перемятая глинистая подушка, которая вызывает значительное (до 40%) снижение несущей способности сваи. Чтобы устранить возникновение этого явления, сваю погружают на заключительном отрезке длиной 15…20 см ударным методом.

Для погружения легких (массой до 3 т) свай и металлического шпунта в грунты, не оказывающие большого лобового сопротивления под острием сваи, применяют высокочастотные (1500 колебаний в 1 мин и более) вибропогружатели с подрессоренной пригрузкой, которые состоят из вибратора и присоединенного к нему с помощью системы пружин дополнительного груза и приводного электродвигателя..

Вибрационный метод наиболее эффективен при несвязных во-донасыщенных фунтах. Применение вибрационного метода для пофужения свай в маловлажные плотные фунты возможно лишь при устройстве лидирующих скважин, т. е. при предварительном выполнении другого процесса, требующего буровых механизмов.

Более универсальным является виброударный способ пофуже-ния свай с помощью вибромолотов.

Наиболее распространенные пружинные вибромолоты работают следующим образом. Вибровозбудитель при вращении валов с дебалансами в противоположных направлениях совершает периодические колебания. Когда зазор между ударником вибровозбудителя и сваей меньше амплитуды колебаний вибровозбудителя, ударник периодически ударяет по наковальне наголовника сваи.

Вибромолоты могут самонастраиваться, т. е. увеличивать энергию удара с повышением сопротивления фунта пофужению свай.

Масса ударной части (вибровозбудителя) вибромолота применительно к пофужению железобетонных свай должна быть не менее 50% от массы сваи и составлять 650…1350 кг.

В практике строительства применяют также метод, основанный на комбинированном воздействии вибрации (или вибрации с ударом) и статического пригруза. Вибровдавливающая установка состоит из двух рам. На задней раме находятся электрогенератор, работающий от тракторного двигателя, и двухбарабанная лебедка, на передней раме – направляющая стрела с вибропогружателем и блоки, через которые проходит к вибропогружателю вдавливающий канат от лебедки. Когда вибровдавливающая установка займет рабочее положение (крюк подвески вибропогружателя должен находиться над местом погружения сваи), вибропогружатель опускают вниз, наголовником соединяют со сваей и поднимают в верхнее положение, а сваю устанавливают на место ее забивки. После включения вибропогружателя и лебедки свая погружается за счет собственного веса, веса вибропогружателя и части веса трактора, передаваемого вдавливающим канатом через вибропогружатель на сваю. Одновременно на сваю действует вибрация, создаваемая низкочастотным погружателем с подрессоренной плитой.

Метод вибровдавливания не требует устройства каких-либо путей для рабочих передвижек, исключает разрушение свай и особенно эффективен при погружении свай длиной до 6 м.

Оптимальная длина свай

Считается, что на основе результатов инженерных изысканий и строительных нормативных документов проектировщики могут точно рассчитать оптимальную длину свай. Безусловно, они могут вычислить все необходимые параметры для создания надежного фундамента, но вряд ли они будут считать деньги заказчика и стремиться к экономической оптимальности. Поэтому, как правило, несущая способность сваи закладывается намного выше той, которая соответствует расчетной нагрузке, за счет использования многочисленных повышающих коэффициентов и желания сделать надежное основание и спать спокойно.

Кроме того, проектировщик обычно немного перестраховывается и при расчете длины свай на основании анализа результатов изысканий. В результате зачастую получается, например, так, что сваи заглубляют на 1–5 «перестраховочных» метров в грунты, прочность которых выше прочности бетона, из которого эти сваи выполнены. Когда такой проект попадает к копровщикам на стройплощадке, они, естественно, пытаются забить пробные сваи в грунт до проектной отметки – ведь технология забивки в принципе не позволяет определить ее оптимальную длину, да и заказчик будет платить за погонные метры. Если свая при забивке не разрушится, то она достигнет проектной глубины, если же разрушится, то копровщики сообщат заказчику, что «геология не соответствует».

Далее после положенного отдыха сваи, изыскатели выполнят ее статические испытания на требуемую проектом расчетную нагрузку (не более того) и подтвердят, что свая ее выдерживает. Но даже если нагрузка на сваю подтвердится больше, чем заложено проектом, то возникает два варианта оптимизации снижения стоимости: (1) уменьшение количества свай. Данный вариант потребует изменения проекта, конструктива ростверков и, как следствие, выхода на повторную экспертизу; (2) сокращение длины свай, т.к. проектная длина избыточна. При этом корректировка проекта не потребуется, достаточно сделать запись об обеспечении несущей способности грунтов на меньшей глубине заложения свай, но для этого необходимо сначала погрузить пробные сваи на меньшую глубину и подтвердить испытаниями несущую способность, что приведет к срыву сроков еще на неделю и при условии, что копровщики знают на какой именно глубине эта несущая способность будет достаточна. Как правило, Заказчик не любит срыва сроков и идти на повторные испытания ради «журавля в небе» не хочет.  Круг замкнулся.

Следует отметить, что забить одиночную сваю – это одно. Грунт в начале ее погружения еще находится в природном состоянии. А совсем другое – при массовой забивке, когда зона уплотнения грунта каждой последующей сваи накладывается на зону уплотнения предыдущей, за счет чего возникает большое недопогружение свай – ложные отказы и лес из «торчащих оголовков» (рис. 1). При этом один недопогруженный метр в среднем обходится в 2 400 руб. (покупка, доставка, разгрузка, срубка, погрузка, вывоз, оплата утилизации).


Рис. 1. Торчащие верхние концы недопогруженных забивных свай

В результате заказчик, проектировщик и подрядчик начинают искать козла отпущения, приостановив работы. Но к этому времени все сваи для массовой забивки уже заказаны на заводе и заказчик вынужден оплачивать поставку и забивку их избыточных метров, а также последующую срубку недопогруженной части свай, их вывоз и утилизацию на свалку.

Так возможно ли в принципе определить оптимальную длину свай? Если свая, забитая, скажем, на 12 м, выдержала испытание и дала минимальную осадку, то возможно ли сократить ее длину до 11 м и выдержит ли она при этом проектную нагрузку? А до 10 или до 7 м? Эти вопросы отражают желание заказчика сократить бюджет. Сваебои вместо ответа смогут ответить только то, что нужно попробовать. А для этого заказчику надо будет закупить более короткую сваю, забить ее, дать ей 3–7 суток отдыха и провести испытание, причем без гарантии положительного результата. Соответственно, заказчик все-таки этого не делает и в соответствии с проектом забивает сваи с избыточным запасом несущей способности, фактически забивая в землю лишние деньги.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий