Технические характеристики приборов
Приборы, осуществляющие выключение нагрузки путем размыкания электрической цепи, обладают различными техническими характеристиками
Все они имеют важное значение и становятся определяющими при выборе подходящего для приобретения агрегата и его последующего монтажа
Показатель номинального значения напряжения отражает рабочее напряжение электротехнического прибора, на которое он изначально рассчитан производителем.
Максимальное значение рабочего напряжения показывает крайне возможное допустимое высокое напряжение, при котором выключатель способен функционировать в нормальном режиме без ущерба для своей работоспособности. Обычно эта цифра превышает размер номинального напряжения на 5-20%.
Поток электрического тока, при прохождении которого уровень прогрева изоляционного покрытия и частей токопровода не препятствует нормальной работе системы и может быть выдержан всеми элементами в течение неограниченного времени, называется номинальным током. Его значение обязательно учитывается при выборе и покупке выключателя нагрузки.
Величина сквозного тока допустимых пределов демонстрирует, какой объем тока, протекающего по сети в режиме короткого замыкания, сможет выдержать установленный в системе выключатель нагрузок.
Ток электродинамической стойкости отражает величину тока короткого замыкания, которая, воздействуя на прибор в течение нескольких первых периодов, не оказывает на него никакого негативного воздействия и механически его никак не повреждает.
Ток термической стойкости определяет предельный уровень тока, чье нагревающее действие на протяжении определенного отрезка времени не выводит из строя выключатель нагрузки.
Также очень важны техническое выполнение привода и физические параметры приборов, определяющие общий размер и массу устройства. Ориентируясь на них, можно понять, где удобнее будет разместить аппараты, чтобы они корректно работали и четко выполняли поставленные задачи.
Достоинства и недостатки аппаратов
Среди безусловных положительных качеств устройств, отвечающих за отключение нагрузки, находятся следующие позиции:
- простота и доступность в изготовлении;
- элементарный способ эксплуатации;
- очень низкая стоимость готового изделия по сравнению с другими видами выключателей;
- возможность комфортной активации/деактивации номинальных токов нагрузок;
- видимый глазу разрыв между контактами, обеспечивающий полную безопасность любых работ на отходящих линиях (монтаж дополнительного разъединителя не требуется);
- недорогая защита от сверхтокового потока посредством предохранителей, как правило, заполненных кварцевым песком (тип ПКТ, ПК, ПТ).
Из минусов выключателей всех типов наиболее часто упоминается способность коммутировать только номинальные мощности, не работая при этом с токами аварийного режима.
Несмотря на дешевизну в стоимости и обслуживании, автогазовые модули признаны устаревшими и при плановом обслуживании или во время реконструкции сетей и подстанций их целенаправленно заменяют на более современные вакуумные элементы
Автогазовым модулям обычно ставят в упрек ограниченный рабочий ресурс, обусловленный постепенным выгоранием внутренних деталей, генерирующих образование газа в дугогасительной камере.
Однако этот момент вполне решаем, причем небольшими средствами, так как элементы газогенерации и парные контакты, предназначенные для дугопоглащения, стоят очень недорого и легко заменяются, причем, не только профессионалами, но и рабочими с невысокой квалификацией.
Автоматические выключатели
Автоматические выключатели – это устройства, которые предназначаются для защитного отключения цепей постоянного и переменного тока в случаях короткого замыкания, токовой перегрузки, снижения напряжения или его исчезновения.
В отличии от плавких предохранителей автоматические выключатели имеют более точный ток отключения, могут многократно использоваться, а также при трехфазном исполнении при срабатывании предохранителя какая – то из фаз (одна либо две) могут остаться под напряжением, что является тоже аварийным режимом работы (особенно при питании трехфазных электродвигателей).
Автоматические выключатели классифицируют по выполняемым функциям, таким как:
- Автоматы минимального и максимального тока;
- Автоматы минимального напряжения;
- Обратной мощности;
Номинальный ток (In)
Это – максимальная величина тока, который автоматический выключатель, снабженный специальным отключающим реле максимального тока, может проводить бесконечно долго при температуре окружающей среды, оговоренной изготовителем, без превышения установленных значений максимальной температуры токоведущих частей.
ПримерАвтоматический выключатель с номинальным током In = 125 А при температуре окружающей среды 40 °C, оснащенный отключающим реле максимального тока, откалиброванного соответствующим образом (настроенным на ток 125 А). Этот же автоматический выключатель может использоваться при более высоких температурах окружающей среды, но за счет занижения номинальных параметров. Например, при окружающей температуре 50 °C этот выключатель сможет проводить бесконечно долго 117 А, а при 60 °C – лишь 109 А при соблюдении установленных требований по допустимой температуре.
Уменьшение номинального тока автоматического выключателя производится путем уменьшения уставки его теплового реле. Использование электронного расцепителя, который может работать при высоких температурах, обеспечивают возможность эксплуатации автоматических выключателей (с пониженными уставками по току) при окружающей температуре 60 °С или даже 70 °С.
Примечание: в автоматических выключателях, соответствующих стандарту МЭК 60947-2, ток In равен обычно Iu для всего распределительного устройства, где Iu обозначает номинальный длительный ток.
Чем отличается автоматический выключатель от выключателя нагрузки
Главное отличие заключается в назначении. Автоматический выключатель входит в группу защитных устройств и служит для аварийного отключения сети в случае возникновения опасности. Это может быть из-за короткого замыкания (КЗ) или чрезмерного тока в цепи. Повышенный ток может возникнуть в нескольких случаях:
- нарушение изоляции;
- повышенная нагрузка.
Нарушение изоляции (не короткое замыкание) может появиться из-за механического повреждения, неправильной эксплуатации или старения материала. От этого не застрахованы ни электроприборы, ни сама проводка. Со временем ситуация только ухудшается, что может привести к появлению и повышению тока утечки.
Также увеличение тока происходит, когда подключается слишком много или очень мощная нагрузка. Опасно такое состояние тем, что электропроводка начинает нагреваться, а это ведёт к дальнейшему разрушению изоляции.
Чтобы предотвратить такой процесс и исключить возгорание в автомате используется тепловая защита. Состоит она из биметаллической пластины, по которой проходит весь ток нагрузки. При превышении номинального тока пластина начинает нагреваться и изгибается, и этот процесс протекает тем быстрее, чем больше ток. При определённой температуре пластина деформируется настолько, что приводит в действие механизм отключения. Автомат размыкает цепь.
Стоит отметить, что при такой проблеме нагрев происходит постепенно. Биметаллическая пластина имеет инертность и это оправдано в этих ситуациях.
Другое дело, когда происходит КЗ. Ток КЗ может превышать номинальный в несколько раз, нагрев происходит очень быстро и пластина не успевает отреагировать. В этом случае на помощь приходит магнитный расцепитель.
Он представляет собой соленоид – электромагнит с подвижным сердечником. При номинальном токе силы магнита не хватает, чтобы открыть ту же самую защёлку, на которую давит биметаллическая пластина. Но при КЗ возникает мощная магнитная сила, которая справляется с этой работой.
Если вспомнить про модульный выключатель нагрузки, то он лишён всех этих защитных механизмов. Используется он исключительно для коммутации нагрузки.
Рабочие токи ВН
Номинальное значение рабочего тока выключателя нагрузки должно быть не меньше номинального значения используемых автоматов. Допускается использовать это значение на индекс выше. Однако следует помнить, что согласно ГОСТу вводные аппараты, а ВН таким и является, должны иметь номинал не ниже 40 А.
Не следует слишком завышать это значение, потому что выключатели имеют большой запас прочности. Например, они могут работать с кратковременным током, длительность которого не превышает 1 секунду, превышающим номинальный в 15 раз. Правда, после этого прибору необходимо дать время, чтобы его контакты остыли. Обычно заводы это оговаривают в своих инструкциях.
Где применяются мини рубильники?
Если говорить о применении для частных лиц, то чаще всего это могут быть вводные щитки. Они позволяют электрикам быстро и безопасно отключать необходимые объекты без предварительного снятия нагрузки. Не запрещено использовать рубильники и в частных домах, дачах, квартирах и других жилых и нежилых помещениях.
Обычно к хозяйственным постройкам (баня, летняя кухня, гараж и т. д.) подводят питание, и если необходимо произвести электромонтажные работы, приходится обесточивать весь дом. Чтобы этого не делать, можно на каждую отходящую ветвь поставить по выключателю нагрузки, тогда каждый объект можно легко и быстро отключить, а главное, не пользоваться автоматами.
Но не забывайте, что помимо ВН любая линия электропроводки, любой кабель должен быть под защитой автоматического выключателя.
на сайте:
Устройство и принцип работы
Одним из основных узлов автомата являются его силовые контакты. Включение ВА обычно осуществляется вручную — путём нажатия кнопки включения или поднятием вверх рукоятки управления. При этом производится взвод пружинного механизма, а элементы контактной группы прижимаются друг к другу с определённым усилием. Сохранение взведённого состояния пружинного механизма обеспечивается благодаря фиксирующей защёлке, удерживающей механический привод во включенном положении.
В разрезе, типовой примерный вид.
Отключение может быть произведено как вручную, так и автоматически, при срабатывании органа защиты выключателя. В простейшем случае, защитные функции выполняются двумя компонентами — электромагнитным и тепловым расцепителями.
Электромагнитный расцепитель
ЭР представляет собой токовую катушку (соленоид) с подвижным электромагнитным сердечником — бойком. Через катушку постоянно проходит ток питаемой электроустановки. Срабатывание соленоида происходит при определённом значении тока, протекающего через контакты автомата. Обычно это величина тока, в несколько раз, а то и на порядки превышающая номинальное значение. При возникновении в защищаемой цепи короткого замыкания, под воздействием аварийных значений, стержень соленоида выдвигается и давит на защёлку механического привода расцепителя. В результате ее освобождения, привод выключателя под действием силы пружины разрывает контакт.
Тепловой расцепитель
Тепловой расцепитель обычно состоит из биметаллической пластины, по которой протекает ток. На самом деле, ток может протекать не по самой пластине, а по намотанному на неё высокоомному проводнику, нагреваемому током и передающему тепло пластине. Биметаллическая пластина — это спаянные между собой тонкие полоски двух металлических сплавов. Материалы подбираются таким образом, чтобы коэффициент их теплового расширения имел большое различие. Необходимо это для того, чтобы при нагревании биметалла пластина изогнулась — ведь один из её слоёв расширяется гораздо более активно.
Далее, при достижении некоторого критического изгиба пластина воздействует на фиксатор защёлки, отключая выключатель. СтабЭксперт.ру напоминает, что параметры системы подобраны таким образом, чтобы разогрев пластины начинался при протекании по ней тока, превышающего номинальное значение на величину порядка 20%. При этом, чем больше значение тока, тем активнее происходит нагрев, следовательно, быстрее достигается критический изгиб и инициируется отключение автомата.
Разница расцепителей
Резюмируя описание работы этих двух механизмов, можно отметить, что расцепитель электромагнитного типа представляет собой токовую защиту без выдержки времени, которую называют токовой отсечкой. Токовая отсечка реагирует на сверхтоки, возникающие при коротких замыканиях в защищаемой сети.
Тепловой расцепитель позволяет реализовать интегральную зависимость времени срабатывания защиты от величины тока. Тепловая защита обеспечивает отключение оборудования при его перегрузке, когда потребляемый ток больше номинального на 20% и более. В этих условиях отсечка ещё не срабатывает, но длительное функционирование оборудования в таком режиме недопустимо.
Читайте еще: что такое и зачем нужен автомат диф?
Типы выключателей нагрузки
Выключатель нагрузки ВНМодульный выключатель нагрузки
Гашение дуги в выключателях нагрузки происходит в специальной камере, которая может иметь различную конструкцию и принцип работы. В настоящее время различают следующие коммутационные аппараты:
- вакуумные;
- электромагнитные;
- элегазовые;
- автогазовые;
- воздушные.
Автогазовый тип устройств является самым популярным на отечественном рынке. Он осуществляет гашение дуги за счет газа, который выделяется из стенок камеры под действием высокой температуры дуги. Воздушные выключатели используют для гашения дуги сжатый воздух, который накапливается за счет преобразования энергии отключающей пружины. Элегазовые устройства используют специальный технический газ SF6 с диэлектрическими свойствами, которым наполняют дугогасительную камеру. При отключении поток этого газа препятствует образованию дуги и последующему нагреву конструктивных элементов выключателя. В вакуумном устройстве разрыв контактов происходит в камере с вакуумом. По этой причине электрическая дуга практически не образовывается. В электромагнитном типе выключателей гашение электрической дуги происходит в результате растяжения дуги по разным камерам. Этого можно добиться с помощью быстрого хода контактов и использования подмагничивания образующейся дуги.
Выключатель нагрузки 6 кВ
Выключатель нагрузки 6 кВ – это одна из разновидностей выключателей нагрузки, предназначенных для эксплуатации в сетях с номинальным напряжением 6000В. Благодаря простоте конструкции и высокой надежности эксплуатации они получили широкое распространение, заменив традиционные автоматические выключатели. Главные достоинства выключателей нагрузки 6 кВ – это:
- простая и надежная конструкция, проверенная многолетним опытом эксплуатации;
- низкая стоимость по сравнению с другими типами выключателей;
- возможность коммутации электрической цепи в нормальном режиме работы;
- возможность работать в паре с предохранителями для защиты от токов короткого замыкания;
- создание видимого разрыва между токопроводящими контактами, что обеспечивает возможность работы без оперирования разъединителем.
Выключатель нагрузки 10 кВ
Выключатель нагрузки 10 кВ отличается от аналогичного устройства с напряжением 6 кВ наличием дугогасящего устройства с большими габаритами камеры. Это вызвано необходимостью гашения дуги в более сложных условиях. Выключатели этого типа повсеместно используются в городских электрических сетях, где на первый план выходят вопросы простоты технического обслуживания и надежности эксплуатации. Невысокая стоимость в совокупности с простотой монтажа обеспечивают высокий уровень популярности данных коммутационных устройств.
Характеристики теплового реле
Основная характеристика для тепловых реле – это время срабатывания, которое зависит от тока нагрузки. Другими словами, данная характеристика называется время-токовой. Если рассматривать общий случай, то до подачи нагрузки через реле будет протекать ток I. В таком случае нагрев биметаллической пластины будет составлять q
Во время проверки данной характеристики очень важно учитывать, из какого состояния (перегретого или холодного) осуществляется срабатывание прибора. Кроме того, при проверке данных устройств очень важно помнить, что пластина не является термически устойчивой при возникновении тока короткого замыкания
Выбор тепловых реле осуществляется следующим образом. Номинальный ток такого защитного устройства выбирается исходя из номинальной нагрузки электрического двигателя. Выбранный ток реле должен составлять 1,2-1,3 от номинального тока электродвигателя (тока нагрузки). Другими словами, такое устройство сработает в том случае, если в течение 20 минут нагрузка будет составлять от 20 до 30 %.
Очень важно понимать, что на работу теплового реле значительное влияние оказывает окружающая температура воздуха. Из-за роста температуры окружающей среды будет уменьшаться ток срабатывания данного приспособления
Если данный показатель будет слишком сильно отличаться от номинального, то нужно будет либо провести дополнительную плавную регулировку реле, либо же покупать новый прибор, но с учетом реальной температуры окружающей среды в рабочей зоне этого агрегата.
Чтобы уменьшить влияние окружающей температуры на величину срабатывания тока, необходимо приобретать реле с большим номинальным значением нагрузки. Для того чтобы добиться правильного функционирования теплого устройства, устанавливать его стоит в том же помещении, в котором находится и контролируемый объект. Однако нужно помнить, что реле реагирует на температуру, а потому располагать его вблизи концентрированных источников тепла запрещается. Таким источниками считаются котлы, источники отопления и прочие похожие системы и приборы.
Устройство и принцип работы
Одним из основных узлов автомата являются его силовые контакты. Включение ВА обычно осуществляется вручную — путём нажатия кнопки включения или поднятием вверх рукоятки управления. При этом производится взвод пружинного механизма, а элементы контактной группы прижимаются друг к другу с определённым усилием. Сохранение взведённого состояния пружинного механизма обеспечивается благодаря фиксирующей защёлке, удерживающей механический привод во включенном положении.
В разрезе, типовой примерный вид.
Отключение может быть произведено как вручную, так и автоматически, при срабатывании органа защиты выключателя. В простейшем случае, защитные функции выполняются двумя компонентами — электромагнитным и тепловым расцепителями.
Электромагнитный расцепитель
ЭР представляет собой токовую катушку (соленоид) с подвижным электромагнитным сердечником — бойком. Через катушку постоянно проходит ток питаемой электроустановки. Срабатывание соленоида происходит при определённом значении тока, протекающего через контакты автомата. Обычно это величина тока, в несколько раз, а то и на порядки превышающая номинальное значение. При возникновении в защищаемой цепи короткого замыкания, под воздействием аварийных значений, стержень соленоида выдвигается и давит на защёлку механического привода расцепителя. В результате ее освобождения, привод выключателя под действием силы пружины разрывает контакт.
Тепловой расцепитель
Тепловой расцепитель обычно состоит из биметаллической пластины, по которой протекает ток. На самом деле, ток может протекать не по самой пластине, а по намотанному на неё высокоомному проводнику, нагреваемому током и передающему тепло пластине. Биметаллическая пластина — это
спаянные между собой тонкие полоски двух металлических сплавов. Материалы подбираются таким образом, чтобы коэффициент их теплового расширения имел большое различие. Необходимо это для того, чтобы при нагревании биметалла пластина изогнулась — ведь один из её слоёв расширяется гораздо более активно.
Далее, при достижении некоторого критического изгиба пластина воздействует на фиксатор защёлки, отключая выключатель. СтабЭксперт.ру напоминает, что параметры системы подобраны таким образом, чтобы разогрев пластины начинался при протекании по ней тока, превышающего номинальное значение на величину порядка 20%. При этом, чем больше значение тока, тем активнее происходит нагрев, следовательно, быстрее достигается критический изгиб и инициируется отключение автомата.
Разница расцепителей
Резюмируя описание работы этих двух механизмов, можно отметить, что расцепитель электромагнитного типа представляет собой токовую защиту без выдержки времени, которую называют токовой отсечкой
. Токовая отсечка реагирует на сверхтоки, возникающие при коротких замыканиях в защищаемой сети.
Тепловой расцепитель позволяет реализовать интегральную зависимость времени срабатывания защиты от величины тока. Тепловая защита обеспечивает отключение оборудования при его перегрузке, когда потребляемый ток больше номинального на 20% и более. В этих условиях отсечка ещё не срабатывает, но длительное функционирование оборудования в таком режиме недопустимо.
Разновидности рубильников
Существует несколько типов аппарата, которые устанавливаются в зависимости от количества сетей и потребителей.
- Однополюсные.
- Двухполюсные.
- Трехполюсные.
- Четырехполюсные.
Однополюсные и двухполюсные устройства используются в однофазных сетях, а остальные — в трехфазных. Однополюсный тип аппарата является очень распространенным вариантом. Такой прибор оснащается одним модулем для передачи направления потока электроэнергии. В таких моделях чаще всего используются медные проводники. Наиболее подходящим такой реверсивный рубильник считается в сети обслуживания генератора с диапазоном до 20 Гц. При выборе такого прибора для определенной сети нужно учитывать все характеристики.
В жилых домах, для которых характерно большое потребление электроэнергии, лучше не использовать, так как предельной нагрузкой такого прибора считают 200А. Также у прибора низкое выходное напряжение. В большинстве случаев такой показатель равен около 200 В.
Для применения в жилых домах используют двухполюсные рубильники. Такой тип прибора может использоваться с потребителями однофазной сети. Средним показателем сопротивления для такого вида рубильника считается 60 Ом. Чаще всего такой перекидной рубильник на два направления используют для современных схем потребительских электросетей. Модификацией прибора определяется показатель выходного напряжения, и в разных двухпозиционных моделях показатели будут отличаться.
Реверсивные приборы, которые используются для смены питания от сети или генератора, подключаются по разным схемам в зависимости от определенного типа сети и количества приборов. К примеру, в однофазной сети можно подключать двухполюсные рубильники с отрицательным сопротивлением 50 Ом. При этом в схеме может присутствовать электросчетчик. Реверсивный трехфазный рубильник наиболее часто встречается в двухфазных электросетях, хотя может быть использован и в однофазной сети. При этом будет задействовано только два полюса прибора.
Однако при подключении нужно учитывать то, что трехходовой рубильник оснащен только расширительными переключателями. Наиболее распространен трехпозиционный прибор в промышленных электросетях. Использование на предприятиях должно быть защищенным, поэтому подключение должно проводиться в электрощитах. Трехфазный рубильник имеет высокий порог чувствительности и оборудован надежной системой защиты от перегрузки. Тип и качество изоляции зависит от производителя.
Двухкондесаторный переключатель
Переключатель двухполюсного типа имеет два проходных конденсатора. Такие приборы могут быть использованы только в однофазной сети, поэтому перекидной рубильник для генератора лучше выбрать именно такого типа. На рынке встречаются и двухмодульные и трехмодульные виды приборов, которые могут подключаться с блоком питания.
Для генератора подойдут перекидные рубильники с пороговым напряжением 350 В. Параметры нагрузки могут быть разными. Данный параметр определяется производителями и чаще всего составляет около 30 А. Для генератора также можно использовать перекидной рубильник 250А. Однако такой прибор нужно подключать вместе с блоком питания, напряжение которого будет от 200 до 300 В. Такой тип прибора предусматривает нагрузку до 3 А.
Подключение любого типа прибора необходимо проводить с соблюдением полярности. При этом на выходе к домашней сети фаза и ноль не должны меняться местами. Входящие подключения от электросетей лучше всего защищать, устанавливая автоматический выключатель. Такой выключатель обычно устанавливают возле счетчика либо в самом щитке перекидного рубильника.