Как рассчитать мощность прибора для нагрева воздуха

Четвертый способ (см. рисунок 14) .

Применение сотовых увлажнителей дает возможность наиболее оптимального с точки зрения затрат энергии решить вопрос увлажнения воздуха. Задавшись фронтальной скоростью движения Vф = 2,3 м/сек приточного воздуха в сотовом увлажнителе можно достичь относительной влажности приточного воздуха:

  • при глубине сотовой насадки 100мм — φ = 45%;
  • при глубине сотовой насадки 200мм — φ = 65%;
  • при глубине сотовой насадки 300мм — φ = 90%.

Построение процессов обработки воздуха на J-d диаграмме.

1. Параметры внутреннего воздуха выбираем из зоны оптимальных параметров:

  • температуру – максимальную tВ = 22°С;
  • относительную влажность – минимальную φВ = 30%.

2. По двум известным параметрам внутреннего воздуха находим точку на J-d диаграмме — (•) В.

3. Температуру приточного воздуха принимаем на 5°С меньше температуры внутреннего воздуха

tП = tВ — 5, °С.

На J-d диаграмме проводим изотерму приточного воздуха — tП.

4. Через точку с параметрами внутреннего воздуха — (•) В проводим луч процесса с численным значением тепло-влажностного отношения

ε = 5 800 кДж/кг Н2О

до пересечения с изотермой приточного воздуха — tП.

Получаем точку с параметрами приточного воздуха — (•) П.

5. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const.

6. Из точки с параметрами приточного воздуха — (•) П проводим линию постоянного теплосодержания — JП = const до пересечения с линиями:

относительной влажности φ = 65%.

Получаем точку с параметрами увлажнённого и охлаждённого приточного воздуха — (•) О.

постоянного влагосодержания наружного воздуха — dН = const.

Получаем точку с параметрами нагретого в калорифере приточного воздуха — (•) К.

7. Часть нагретого приточного воздуха пропускаем через сотовый увлажнитель, оставшуюся часть воздуха пропускаем по байпасу, минуя сотовый увлажнитель.

8. Смешиваем увлажнённый и охлаждённый воздух с параметрами в точке — (•) О с воздухом, проходящим по байпасу, с параметрами в точке — (•) К в таких пропорциях, чтобы точка смеси — (•) С совместилась с точкой приточного воздуха — (•) П:

  • линия КО — общее количество приточного воздуха — GП;
  • линия КС — количество увлажнённого и охлаждённого воздуха — GО;
  • линия СО — количество воздуха, проходящего по байпасу — GП — GО.

9. Процессы обработки наружного воздуха на J-d диаграмме будут изображаться следующими линиями:

  • линия НК — процесс нагревания приточного воздуха в калорифере;
  • линия КС — процесс увлажнения и охлаждения части нагретого воздуха в сотовом увлажнителе;
  • линия СО — байпасирование нагретого воздуха, минуя сотовый увлажнитель;
  • линия КО — смешение увлажнённого и охлаждённого воздуха с нагретым воздухом.

10. Обработанный наружный приточный воздух с параметрами в точке — (•) П поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия ПВ. За счёт нарастания температуры воздуха по высоте помещения — grad t. Параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У.

11. Количество воздуха, проходящего через оросительную камеру можно определить по отношению отрезков

12. Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

Принципиальная схема обработки приточного воздуха в холодный период года — ХП, для 4-го способа, смотри на рисунок 15.

Плюсы и минусы отопления с калорифером

Система обогрева дома, основывающаяся на подаче прогретого до установленной температуры воздуха непосредственно в дом, представляет особый интерес для владельцев собственного жилья.

Такая конструкция отопительной системы состоит из следующих важных узлов:

  • калорифера, выступающего в роли теплогенератора, подогревающего воздух;
  • каналов (воздуховодов), по которым поступают нагретые воздушные массы в дом;
  • вентилятор, направляющий хорошо прогретый воздух по всему объему помещения.

Преимуществ у системы такого типа много. К ним относится и высокий КПД, и отсутствие вспомогательных элементов для теплообмена в виде радиаторов, труб, и возможность объединить ее с климатической системой, и малая инерционность, в результате чего прогрев больших объемов происходит очень быстро.

Галерея изображенийФото из Калорифер — нагревательный прибор, предназначенный только для обработки воздушного потока без изменения влажности обрабатываемой массыКалориферами оснащаются системы воздушного отопления и кондиционирования, осуществляющие подмес свежей порции воздуха с улицы к циркулирующему внутри потокуВ системах воздушного отопления нагреваемый калорифером воздух нагнетается в помещение при помощи вентилятораВеским плюсом использования калориферов считается их возможность в максимально быстром темпе обогреть большие по площади и объему помещения, в том числе цеха, торговые комплексы, складыОборудование для нагревания воздухаСистема кондиционирования с калориферомВоздушное отопление с калориферомБыстрый обогрев больших площадей

Для многих домовладельцев недостатком является то, что монтаж системы возможен только одновременно со строительством самого дома и затем дальнейшая модернизация ее невозможна.

Минусом является и такой нюанс, как обязательное наличие резервного питания и потребность в регулярном техническом обслуживании.

У нас на сайте есть более подробные материалы по устройству воздушного отопления в доме и коттедже. Рекомендуем вам ознакомиться с ними:

  • Воздушное отопление своими руками: все про воздушные системы отопления
  • Как устроить воздушное отопление загородного дома: правила и схемы сооружения
  • Расчет воздушного отопления: основные принципы + пример расчета

Водяной калорифер: принцип действия и предназначение

Водяные калориферы используют для подогрева воздуха в различных помещениях, где отсутствует централизованное отопление. Также они предназначены для систем вентиляции или кондиционирования. Этот вид калориферов является климатическим оборудованием, служащим как теплоутилизатор, наполненный промежуточным теплоносителем. Теплоноситель в данном оборудовании – это подогретая или горячая вода.

Калорифер паровой от водяного отличается тем, что в качестве теплоносителя в приборе служит сухой насыщенный пар. Это более усовершенствованные модели обогревателей, поэтому цена калорифера такого класса на порядок выше.

Принцип действия калорифера отопления: синие стрелки — холодный воздух, красные стрелки — тёплый воздух

Воздухонагреватель водяной: особенности конструкции и функционирования устройства

Водяной обогреватель имеет очень высокий уровень производительности. Это возможно, благодаря широкому температурному диапазону, колеблющемуся от 70 до 110°С. Перепад температур создает сам калорифер. Конструкция прибора представляет собой трубчатый корпус из металла, покрытый реберными пластинами.

Наиболее распространенным видом воздухонагревателей считается водяной калорифер с перпендикулярным потоком. Его используют в разных вентиляционных устройствах. При этом вода движется противоположно потоку воздуха, в прямоугольном направлении. В результате вода поднимается по каналам снизу-вверх, пузырьки воздуха поступают вверх устройства, а оттуда выводятся через специальные воздухоотводы.

В любом водном калорифере в обязательном порядке должен быть установлен узел обвязки, представляющий собой специальный компонент устройства, отвечающий за подведение к теплообменнику горячей воды.

Конструкция водяного калорифера включает такие обязательные детали:

  • насос для циркуляции теплоносителя;
  • трехходовой клапан;
  • арматура конструкции;
  • блок управления;
  • узел для обвязки, контролирующий производительность калорифера и препятствующий его заморозке.

Схема строения электрического калорифера

Калорифер водяной для приточной вентиляции: принцип работы и сфера использования

Калорифер электрический для приточной вентиляции используют для подогрева или, наоборот, для охлаждения воздуха, который поступает с улицы. Устанавливают такие приборы в середине канала вентиляции. Агрегат создает благотворный микроклимат, независимо от времени года. Канальные калориферы используют в помещениях с разной площадью. Работа калорифера для приточной вентиляции будет особенно эффективна в просторных цехах, теплицах, складских помещениях, которые оборудованы соответствующей вентиляционной системой.

Приточная установка с водяным калорифером считается самым эффективным способом отопления или охлаждения в помещениях с большой площадью. Наиболее актуальна их эксплуатация зимой, когда воздух, который поступает сквозь вентиляционную приточную систему, требует подогрева.

Агрегаты устанавливают в середине канала вентиляции, имеющий круглое или прямоугольное сечение. Воздух, поступающий с улицы, пропускается сквозь систему фильтрации и попадает в калорифер для приточной вентиляции, где происходит его нагрев за счет тепла, который отдает водяная отопительная система, поступающая к теплообменнику через канал воздухонагревателя.

Схема установки калориферов в приточную вентиляцию

Приточные установки с электрическим калорифером также обеспечивают поступление в помещение свежего, чистого, прохладного воздуха. При этом через вентиляционную систему выходят отработанные массы. Как в промышленности, так и в быту более востребованы приточные установки с электрокалорифером, работающие от сети.

Пример расчета теплопотерь дома

Рассматриваемый дом располагается в городе Кострома, где температура за окном в наиболее холодную пятидневку достигает -31 градусов, температура грунта — +5оС. Желаемая температура в помещении — +22оС.

Рассматривать будем дом со следующими габаритами:

  • ширина — 6.78 м;
  • длина — 8.04 м;
  • высота — 2.8 м.

Величины будут использоваться для вычисления площади ограждающих элементов.


Для расчетов удобнее всего нарисовать план дома на бумаге, обозначив на нем ширину, длину, высоту здания, расположение окон и дверей, их габариты

Стены здания состоят из:

  • газобетона толщиной В=0.21 м, коэффициентом теплопроводности k=2.87;
  • пенопласта В=0.05 м, k=1.678;
  • облицовочного кирпича В=0.09 м, k=2.26.

При определении k следует использовать сведения из таблиц, а лучше — информацию из технического паспорта, поскольку состав материалов разных производителей может отличаться, следовательно, иметь разные характеристики.


Железобетон имеет наиболее высокую теплопроводимость, минераловатные плиты — наименьшую, поэтому их наиболее эффективно использовать в строительстве теплых домов

Пол дома состоит из следующий слоев:

  • песка, В=0.10 м, k=0.58;
  • щебня, В=0.10 м, k=0.13;
  • бетона, В=0.20 м, k=1.1;
  • утеплителя эковаты, B=0.20 м, k=0.043;
  • армированной стяжки, В=0.30 м k=0.93.

В приведенном плане дома пол имеет одинаковое строение по всей площади, подвальное помещение отсутствует.

Потолок состоит из:

  • минеральной ваты, В=0.10 м, k=0.05;
  • гипсокартона, B=0.025 м, k= 0.21;
  • сосновых щитов, В=0.05 м, k=0.35.

У потолочного перекрытия выходов на чердак нет.

В доме окон всего 8, все они двухкамерные с К-стеклом, аргоном, показатель D=0.6. Шесть окон имеют габариты 1.2х1.5 м, одно — 1.2х2 м, одно — 0.3х0.5 м. Двери имеют габариты 1х2.2 м, показатель D по паспорту равен 0.36.

Калорифер электрический бытовой: особенности и виды

Существуют специальные автономные отопительные электрические калориферы для дома. Такие приборы используют, в основном, как источник временного тепла в периоды, когда есть перебои в централизованном отоплении, либо в условиях ранних или затянувшихся холодов. Современные производители предлагают широкий модельный ряд различных обогревателей.

Чтобы подобрать правильный вариант, необходимо учесть ряд особенностей, в частности обратить внимание на мощность нагревательного элемента, сопоставленную с площадью отапливаемого помещения. Следует обратить внимание на функциональность калорифера и как быстро и эффективно он прогревает помещение

Экономия электроэнергии тоже очень важный вопрос в процессе выбора обогревателя

Современный рынок обогревателей предлагают такие виды электрических бытовых калориферов:

  • масляный радиатор;
  • электрический конвектор;
  • тепловой вентилятор;
  • инфракрасный калорифер.

Размеры различных тепловентиляторов производителя Volcano.

Отдавая предпочтение тому или иному виду калорифера для бытовых нужд, следует учитывать предполагаемые условия эксплуатации. Важную роль играет мощность нагревательного элемента. Под этим понятием подразумевают количество тепловой энергии, которое производится за определённый промежуток времени.

Для стандартных квартир, где высота потолка не превышает 2,5 м, обогреватель подбирают исходя из таких условий: на 10 квадратных метров требуется 1 кВт мощности. Если калорифер служит дополнительным источником тепла, то на комнату в 25 квадратов достаточно прибора с мощностью 1-1,5 кВт. В не отапливаемом помещении прибор выбирают, исходя из требований: 1 кВт на 25 метров площади.

Онлайн калькулятор расчета мощности калорифера

Эффективная работа вентиляции зависит от правильного расчёт и подбора оборудования, так как эти два пункта взаимосвязаны между собой. Для упрощения этой процедуры мы подготовили для Вас онлайн калькулятор расчета мощности калорифера.

Подбор мощности калорифера невозможен без определения типа вентилятора, а расчёт температуры внутреннего воздуха бесполезен без подбора калорифера, рекуператора и кондиционера. Определение параметров воздуховода невозможно без вычисления аэродинамических характеристик. Расчёт мощности калорифера вентиляции ведётся по нормативным параметрам температуры воздуха, и ошибки на этапе проектирования приводят к увеличению затрат, а также невозможности поддержать микроклимат на требуемом уровне.

Калорифер (более профессиональное название «канальный нагреватель») – универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.

Канальные нагреватели различаются способом передачи энергии и разделяются на:

  1. Водяные — энергия передаётся через трубы с горячей водой, паром.
  2. Электрические — тэны, получающие энергию от центральной сети электроснабжения.

Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.

Электрический калорифер

Основа – нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.

Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.

Главный недостаток этого агрегата — инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.

Водяной калорифер

Основа водяного калорифера – нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода — снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.

Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.

Кроме нагревательного элемента в состав системы входит: (обеспечивает подвод теплоносителя к обменщику),  насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.

Расчёт мощности

Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:

  • Температуры приточки. Берётся минимальное значение для зимнего периода.
  • Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
  • Среднего расхода воздуха м³/ч..

Остались вопросы? Звоните по телефону: +7 (953) 098-28-01

Вас так же может заинтересовать монтаж вентиляции.

Онлайн-калькулятор

Обратите внимание! Сегодня возможности интернета позволяют с помощью компьютера рассчитать мощность радиаторов отопления, учитывая все инновационные строительные технологии

Расчет радиаторов отопления

Формула онлайн-расчета аналогична стандартной, но немного видоизменена с учетом корректировочных коэффициентов. Они устанавливаются:

  • На пластиковые окна, которые уменьшают потери тепла.
  • На наружные стены — чем их больше, тем выше коэффициент.
  • На высоту помещения. Если оно более 2,5 метров, то коэффициент увеличивается.

В базовом онлайн-расчете за основу взяты средние значения по каждому типу отопительных батарей, межосевое расстояние которых равно 500 мм. По теплоотдаче в стандартный расчет приняты данные:

  • Для чугунных радиаторов — 145 Вт.
  • Для биметаллических — 185 Вт.
  • Для алюминиевых — 190 Вт.

Чтобы провести расчет, необходимо в компьютерную базу ввести все запрашиваемые данные:

  • Площадь и высоту комнаты.
  • Количество окон и наружных стен.
  • Тип помещения и выбранного радиатора.
  • Состояние и материал стен.
  • Минимальную температуру на улице.

После заполнения полей онлайн-формы нужно нажать только опцию «Выполнить расчет», и через несколько секунд компьютер выдаст результат. Это очень просто и удобно. Онлайн-калькулятор можно найти на сайте производителя радиаторов.

Замечание о кпд нагрева воды

Существует распространенное ошибочное мнение о том, что водяные электронагреватели имеют кпд равный 100%. Это вызвано тем, что в теоретических расчётах потерями энергии нередко пренебрегают из-за их малой величины. Но когда расчёты имеют практическое применение, то нетрудно заметить, что в действительности потери энергии при нагреве воды происходят уже с первых секунд. В зависимости от нагревательного прибора это могут быть следующие основные виды потерь:

  • на разогрев самого нагревательного элемента (особенно много для электроплиты),
  • на нагрев стенок ёмкости (чайника, бака),
  • теплопередача и тепловое излучение энергии в окружающую среду от стенок ёмкости и непогружного нагревательного элемента),
  • испарение с поверхности воды в открытых емкостях (кастрюлях и чайниках без крышки),
  • потери на парообразование при кипении (самый мощный канал потерь).

Исходя из направлений основных потерь, нетрудно определить мероприятия по повышению кпд процесса нагрева воды:

  • использование погружного нагревательного элемента,
  • использование закрытой ёмкости,
  • теплоизоляция ёмкости,
  • использование минимально необходимой температуры нагрева,
  • отключение при возникновении кипения.

В качестве дополнительных потерь можно отметить:

  • потери в электрических проводах и контактах (разогрев проводов и штепсельной вилки электроприбора).
  • потери на побочных электрохимических процессах (ионные нагреватели, электрохимическое разложение воды, электрохимическое растворение анода),
  • потери на звук (шум, издаваемый пузырьками пара в месте контакта нагревателя или горячей поверхности с водой).

С точки зрения только потерь энергии дополнительные потери являются мизерными и несущественными, однако с точки зрения незапланированных расходов и рисков эти потери требуют особого внимания:

  • Разогрев проводов электропитания в лучшем случае приводит к временной поломке проводов/розетки/вилки, в худшем — к пожару, поражению электрическим током, ожогу.
  • Электрохимические процессы насыщают воду ионами металлов, разъедают бак и погружной нагревательный элемент. Первое делает воду непригодной для питья, второе сокращает срок службы водонагревателя и может вызвать потоп, если бак проржавеет насквозь.
  • Шум при нагреве воды является индикатором того, что на поверхности контакта воды с горячим металлом происходит парообразование. Этот процесс приводит к образованию накипи. Из-за того, что накипь плохо проводит тепло, нагревательный элемент начинает перегреваться, приходя в негодность ускоренными темпами (также немного увеличивается время нагрева). Поломка нагревательного элемента может привести к поражению людей электрическим током). Также, шум сам по себе может мешать окружающим, вызывая шумовое загрязнение.

Исходя из направлений дополнительных потерь, выделяются мероприятия по избеганию и снижению их негативных последствий:

  • Использование исправной электросети (исправного заземления), периодическая проверка нагрева питающих проводов, своевременное устранение проблем.
  • Нагрев питьевой воды только специально предназначенными для этого приборами.
  • Своевременная замена анода в водонагревателях (магниевый анод, алюминиевый анод).
  • Отключение нагревателя от водопровода и электросети на время отсутствия людей.
  • Использование активных систем защиты от протечек (автоматический клапан перекрывает подачу воды при намокании пола там, где установлен датчик).
  • Использование УЗО (устройство защитного отключения) для водонагревателей, и периодическая проверка работоспособности этого устройства 1 раз в полгода.
  • Снижение температуры поверхности горячего металла в месте контакта с водой (для снижения образования накипи и шума) следующими способами или их комбинациями:
    – снижение мощности нагревателя без снижения площади контакта;
    – увеличение площади контакта нагревателя с водой без увеличения мощности (например, предпочесть тен с бОльшей удельной площадью, если позволяет пространство);
    – активное регулирование (ограничение)
    температуры нагревателя симисторным (транзисторным) блоком управления;

    установка дополнительных тенов, работающих одновременно, но со сниженной мощностью (последовательное включение);
    – периодическая проверка наличия накипи, своевременная очистка;
    – увеличение скорости потока воды около тена или нагревательной поверхности.

Особенности конструкции приспособления

Основные элементы приточной вентиляции

  • Воздухозаборная решетка. Выступает в роли эстетического оформления, и барьера, который защищает мусорных частиц в массах приточного воздуха.
  • Клапан приточной вентиляции. Его предназначение — блокирование прохода холодного воздуха извне в зимний период и горячего — в летний. Сделать его работу автоматической можно с помощью электропривода.
  • Фильтры. Их предназначение — очистка входящего воздуха. Требую замены каждые 6 месяцев.
  • Водяной калорифер, электрические тэны — предназначены для обогрева входящих воздушных масс.
  • Для помещений с небольшой площадью рекомендуется использовать вентиляционные системы, с электрическими тэнами, для больших пространств — водяной нагреватель.

Элементы приточно-вытяжной вентиляции

Дополнительные элементы

  • Вентиляторы.
  • Диффузоры (способствуют распределению масс потока воздуха).
  • Глушитель шума.
  • Рекуператор.

Конструкция вентиляции напрямую зависит от вида и способа крепления ситемы. Они бывают пассивного и активного действия.

Пассивные вентиляционные системы.

Такой прибор представляет собой клапан приточной вентиляции. Черпание уличных аоздушных масс происходит за счет перепада давления. В холодное время нагнетанию способствует перепад температур, в теплый период – вентилятор вытяжки. Регуляция такой вентиляции может быть автоматической и ручной.

Автоматизированная регуляция напрямую зависит от:

  • скорости потока воздушных масс, проходящих через вентиляцию;
  • влажности воздуха в пространстве помещения.

Недостаток системы — в зимнюю пору года такая вентиляция для обогрева дома не эффективна, поскольку создается большой перепад температур.

На стену

Относится к пассивному типу приточной вентиляции. Такая установка имеет компактный короб, который крепиться на стену. Для управления подогревом оснащен ЖК дисплеем и пультом управления. Принцип действия заключается в рекуперации внутренних и внешних воздушных масс. Для обогрева помещения данное приспособление размещают возле радиатора отопления.

Активные вентиляционные системы

Поскольку в таких системах есть возможность регулировать интенсивность подачи свежего воздуха, такие вентиляции для отопления и подогрева помещения они более востребованы.

По принципу подогрева такой приточный обогреватель может быть водяной и электрический.

Водяной нагреватель

Работает от системы отопления. Принцип работы системы данной вентиляции заключается в циркуляции воздуха через систему каналов и трубок, внутри которых горячая вода либо специальная жидкость. При этом подогрев происходит в теплообменнике, встроенном в централизованной отопительной системе.

Электрический нагреватель.

Принцип работы системы заключается в преобразовании электрической энергии в тепловую с помощью электрического тэна.

Бризер

Это компактное устройство, небольших размеров для приточной вентиляции, с подогревом. Чтобы проводилась подача свежего воздуха данное приспособление крепиться к стене помещения.

Бризер Тион о2

Конструкция бризера tion o2:

  • Канал, состоящий из воздухозаборника и воздуховода. Это – герметичная и утепленная трубка, за счет которой устройство черпает воздух извне.
  • Клапан задержки воздуха. Этот элемент представляет собой воздушную прослойку. Предназначен он для препятствия оттока теплого воздуха, в то время когда устройство выключено.
  • Система фильтрации. Состоит он из трех фильтров, которые установлены в определенной последовательности. Первые два фильтра очищают поток воздуха от видимых его загрязнений. Третий фильтр – глубокой очистки – от бактерий и аллергенов. Он очищает входящий воздух от различных запахов и выхлопных газов.
  • Вентилятор для притока воздуха с улици.
  • Керамический нагреватель, который оснащен климат-контролем. Отвечает за нагрев притока воздушных потоков и автоматическую регуляцию температуры.

Расчет мощности калорифера

Определимся с исходными данными, которые понадобятся, чтобы правильно подобрать мощность нагревателя для вентиляции:

  1. Объём воздуха, который будет перегоняться за час (м3/ч), т.е. производительность всей системы – L.
  2. Температура за окном. – tул.
  3. Температура, до которой нужно довести нагрев воздуха – tкон.
  4. Табличные данные (плотность воздуха определённой температуры, теплоёмкость воздуха определённой температуры).

Инструкция для расчета с примером

Шаг 1. Расход воздуха по массе (G в кг/ч).

Формула: G = LxP

Где:

  • L – расход воздуха по объёму (м3/ч)
  • P – плотность воздуха по среднему.

Пример: С улицы поступает воздух -5° С, а на выходе нужна t +21°С.

Сумма температур (-5) + 21 = 16

Среднее значение 16:2 = 8.

По таблице определяется плотность этого воздуха: P = 1,26.

Плотность воздуха в зависимости от температуры кг/м3

-50-45-40-35-30-25-20-1510--5+5+10+15+20+25+30+35+40+45+50+60+65+70+75+80+85
1,581,551,511,481,451,421,391,371,341,321,291,271,251,231,201,181,161,151,131,111,091,061,041,031,011,00,99

Если производительность вентиляции 1500 м3/ч, то расчёты будут следующие:

G = 1500 х 1,26 = 1890 кг/ч.

Шаг 2. Расход теплоты (Q в Вт).

Формула: Q = GxС x (tкон – tул)

Где:

  • G – расход воздуха по массе;
  • С – удельная теплоёмкость входящего с улицы воздуха (табличный показатель);
  • tкон – температура до которой нужно прогреть поток;
  • tул – температура входящего с улицы потока.

Пример:

По таблице определяем С для воздуха, температурой -5° С. Это 1006.

Теплоемкость воздуха в зависимости от температуры, Дж/(кг*К)

-50-45-40-35-30-25-20-1510--5+5+10+15+20+25+30+35+40+45+50+60+65+70+75+80+85
101310121011101010101009100810071007100610051005100510051005100510051005100510051005100510061006100710071008

Подставляем данные в формулу:

Q = (1890/3600*) х 1006 х (21 – (-5)) = 13731,9** Вт

*3600 – это час, переведённый в секунды.

**Получившиеся данные округляются в большую сторону.

Результат: для нагрева воздуха от -5 до 21 °С в системе производительностью 1500м3, требуется калорифер мощностью 14 кВт

Существуют онлайн калькуляторы, где введя производительность и температуры можно получить примерный показатель мощности.

Лучше предусмотреть запас мощности (на 5-15 %), поскольку производительность оборудования со временем часто снижается.

Вычисление поверхности нагрева

Чтобы рассчитать площадь нагреваемой поверхности (м2) вентиляционного калорифера, используют следующую формулу:

S = 1,2 Q : (k (tжид. – t возд.)

Где:

  • 1,2 – коэффициент остывания;
  • Q – расход теплоты, который мы уже вычислили ранее;
  • k – коэффициент теплоотдачи;
  • tжид. – средний показатель температуры теплоносителя в трубах;
  • tвозд – средняя температура потока, поступающего с улицы.

K (теплоотдача) – это табличный показатель.

Средние температуры вычисляются путём нахождения суммы поступающей и желаемой температуры, которую нужно разделить на 2.

Получившийся результат округляется в большую сторону.

Знание площади поверхности нагревателя для вентиляции может понадобиться при подборе нужного оборудования, а также для закупки нужного количества материалов при самостоятельном изготовлении элементов системы.

Особенности расчета паровых калориферов

Как уже говорилось, калориферы используются одинаковые для водяного отопления и для применения пара. Расчёты осуществляются по тем же формулам, только расход теплоносителя вычисляется по формуле:

G = Q: m

Где:

  • Q – расход теплоты;
  • m– показатель теплоты, выделяемой при конденсации пара.

А скорость движения пара по трубам не берётся в расчёт.

Онлайн-расчет мощности водяного калорифера

Расход тепла водяным калорифером на подогрев приточного воздуха. В поля калькулятора вносятся показатели: объем нагнетаемого вентилятором холодного воздуха, температура входящего в калорифер воздуха, необходимая температура на выходе из калорифера. По результатам онлайн-расчета показывается требуемая мощность водяного калорифера для соблюдения заданных условий.

1 поле. Объем проходящего через калорифер приточного воздуха, м³/ч 2 поле. Температура воздуха на входе в водяной калорифер, °С 3 поле. Необходимая температура воздуха на выходе из калорифера, °С 4 поле (результат). Требуемая тепловая мощность водяного калорифера, кВт

Пример расчета вентиляции квартиры

Проектирование и расчет приточной вентиляции для жилого помещения проводят в несколько этапов:

  • расчет количества воздуха;
  • подбор вентиляционных каналов;
  • расчет подогрева;
  • выбор размеров решеток, клапанов и других элементов;
  • расчет вентиляторов или ПУ;
  • выбор автоматики.

Взятая для примера квартира общей площадью 81 м2 состоит из трех жилых помещений. Используя нормы расчета из СНиП, составим таблицу необходимого воздухообмена для каждой комнаты. Так как в квартире проживают 5 жильцов, то на одного человека приходится меньше чем 20 м2 площади. Гостиная и кухня объединены (добавляем 100 м3/ч на газовую плиту).

Наименование помещения Площадь Воздухообмен, м3/ч
1 Кухня-столовая (гостиная) 30,3 191
2 Спальня 13,74 41
3 Санузел 1,26 25
4 Ванная 2,64 25
5 Гардероб 4,4 3
6 Спальня 14,92 45
7 Прихожая 14
Сумма, м3/ч 330

Подача организовывается в гостиную и спальни, а вытяжка с помощью настенных вентиляторов и вентиляционных каналов из зоны газовой плиты, санузла и ванной.

Схема вентиляции квартиры.

Приточные решетки и диффузоры размещаются на некотором удалении от вытяжных элементов. Воздух подогревается электрическими, водяными нагревателями или тепловыми насосами.

Расчет скорости нагрева

При расчете мощности электронагревательных элементов использованы следующие расчетным данные: масса воды, начальная и конечная (желаемая) температура воды и время, затрачиваемое на нагревание. Мощность ТЭНа P

определяется математическим выражением:P=0,0011m(t k -t н)/T . в котором:m — масса нагреваемой воды,t k иt н — начальная и конечная температура воды,T — затрачиваемое на ее нагревание время. Вычисление мощности нагревательного элемента выполняется данным калькулятором без учета тепловых потерь, связанных с конструктивными особенностями емкости, температуры окружающей среды, состоянием греющей поверхности ТЭНа и пр. Кроме того, следует учесть фактическое напряжение питающей сети, которое может сильно отличаться от номинального значения. Так, при пониженном напряжении, температура рабочей поверхности будет меньше значения, заявленного изготовителем, следовательно, и времени для нагрева потребуется больше. Учитывая удельный вес воды составляет 1 г/см 3. в поле калькулятора “Масса нагреваемой воды” при вводе данных может быть использовано значение ее объема. Результат вычисления (P) может быть значением мощности как одного ТЭНа, так и нескольких параллельно соединенных элементов.

Выводы и полезное видео по теме

Как выглядят ШУВ в собранном виде, что входит в состав «начинки», как производится крепление приборов и присоединение проводов, можно увидеть в представленных ниже видеороликах.

Поэтапная сборка и варианты монтажа:

Видеообзор – образец сборки ШУВ с калорифером:

Автоматизация вентиляционной или любой другой системы – процесс ответственный и дорогой. Если неправильно подобрать оборудование или произвести сборку, может возникнуть авария в результате которой пострадают люди, например, на химическом предприятии.

Как минимум, выйдет из строя техника, также дорогостоящая. По этим причинам установкой ЩУВ с начального этапа проектирования и до конца должны заниматься исключительно специалисты.

Источники

  • https://ventilsystem.ru/ventilyaciya/kalorifery-dlya-pritochnoj-ventilyacii.html
  • https://stroy-podskazka.ru/ventilyaciya/pritochnaja-kalorifer/
  • http://remoo.ru/otoplenie/elektricheskij-kalorifer
  • https://zao-tst.ru/kalorifery.html
  • https://www.tproekt.com/kalorifery-otopleniya/
  • https://ventkam.ru/ventilyatsiya/kalorifer
  • https://sovet-ingenera.com/vent/oborud/shhit-upravleniya-ventilyaciej.html
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий