Трехмерное моделирование
Model Studio CS Отопление и вентиляция предлагает наиболее полный набор инструментов для решения задач компоновки разветвлённых сетей отопления и вентиляции.
Высокоэффективные инструменты отрисовки трубопроводов/воздуховодов позволяют трассировать трубопровод/воздуховод по координатам, по углам, с использованием привязок, а также применяя специальные интеллектуальные средства построений, например, координатные фильтры для точного позиционирования трассы относительно объектов смежных специальностей.
В Model Studio CS Отопление и вентиляция встроен инструмент автоматической трассировки, позволяющий соединить две выбранные пользователем точки трубопроводом/воздуховодом заданного размера сечения по наименьшему конструктивному расстоянию, с автоматическим расположением отводов.
Построение трубопроводов/воздуховодов ведется не только эскизированием с применением обобщенных деталей (примерные размеры, условные диаметры, отсутствие информации о производителе), но и в конструкторском режиме, когда используются точные диаметры, точные размеры и точная информация об изделиях (использование миникаталогов или «спеков»). Современное исполнение Model Studio CS Отопление и вентиляция позволяет на любом этапе внести в модель исправления, при этом элементы искусственного интеллекта программы произведут корректировку всех связанных деталей и трубопроводов/воздуховодов, автоматически пересчитывая длины труб/воздуховодов и выполняя подгонку размеров сечения трубопровода/воздуховода.
Для изменения положения деталей на трубе/воздуховоде достаточно указать деталь и ввести нужную величину в динамическом размере — Model Studio CS доделает остальное
Наряду со стандартными функциями построения и редактирования, программа предлагает и ряд уникальных возможностей:
- генерация параллельных трубопроводов позволяет сократить время создания трехмерных моделей внутренних сетей;
- создание ломанных видов;
- тиражирование опор с заданным шагом для эффективной расстановки опор по трубопроводам;
- простановка гребенчатых выносок на планах и разрезах;
- создание одним нажатием кнопки байпасных соединений, П-образных и Z-образных участков, подъемов, опусков;
- задание и редактирование уклонов трубопроводов, с автоматической «подгонкой» модели под новый уклон.
Проектирование систем отопления и вентиляции здания средствами Model Studio CS ведется при помощи интеллектуальных объектов базы данных. Конструирование воздуховодов и оборудования интуитивно понятно и позволяет создавать модели любой сложности. При редактировании объектов все связи между элементами сохраняются, при этом пользователю предлагается выбрать элементы, которые так же должны быть изменены. Поддерживается создание сборок типовых узлов вентиляции с последующим сохранением в базу данных, с целью дальнейшего использования в других проектах.
Построение системы вентиляции здания с учетом строительной части
Оформление
Project StudioCS Отопление. Оформление плана
Программа Project StudioCS Отопление полностью соответствует требованиям отечественных нормативных документов. Все табличные формы отвечают ГОСТ 21.602−2011 и ГОСТ 21.110−2013. Размещение на чертеже рамки с основной надписью осуществляется по ГОСТ Р 21.1101−2013.
Project StudioCS Отопление. Оформление аксонометрии
В программе реализован следующий функционал: уклон (информация берется с трубопровода), высотная отметка (автоматически считывающая реальную высоту объекта), текстовый элемент (врезка в трубы обозначений трубопровода Т1 и Т2) и спецвыноска.
Проектирование вентиляции: как правильно рассчитать воздухообмен в частном (загородном) доме
Под понятием воздухообмена понимается периодичность смены кислорода в пределах жилого пространства за заданный период времени. Соответствующие нормы четко регламентированы нормативной документацией. Традиционно пользуются 3 способами расчета. В этой статье рассмотрим наиболее доступные методы, подходящие для собственноручной реализации.
Расчет по площади объекта
Для подсчета рассматриваемого параметра, следует ориентироваться на действующие нормы – для объектов жилой недвижимости кислород должен сменяться по 3 м3 ежечасно, из расчета каждый квадратный метр. Например, для комнаты площадью 15 м2 соответствующее значение составит 45 м3/ч. Практически все примеры проектов вентиляции в современных многоквартирных домах, реализованы по данному стандарту.
Расчет по действующим санитарным нормам
Для проектирования системы воздухообмена проще всего воспользоваться действующими гигиеническими стандартами. Данные нормы учитываются при реализации новых домостроений. Учитывая действующие санитарно-гигиенические нормативы, средняя потребность в чистом кислороде для каждого человека составляет не менее 60 м3/ч, если речь идет о помещении, где он находится постоянно.
Величина воздухообмена, м 3/ч, не менее
Потребности в чистом воздухе наиболее полно регламентируются и соответствующим образом представлены в СНиПах 2.04.05-91.
Распределение воздушных масс по кратности
Под понятием кратности подразумевается периодичность смены воздуха в конкретной комнате
Рассматриваемый показатель предполагает учет такого важного показателя, как объем помещения. Для этой цели предусмотрены табличные данные для Жилых зданий (речь идёт о МГСН 3.01-96)
На первом этапе составляется техническое задание для установки. На втором – ТЗ загружается в программу, вводятся данные по параметрам комнаты. На третьем – осуществляется проектирование вентиляции.
Перечень актуальных табличных данных для частных загородных домов, коттеджей и городских квартир:
- ванная – приток чистого кислорода 3 кубометра ежечасно на каждый 1 м2 площади, вытяжка должна обеспечить отвод 25 кубометров грязных масс каждый час;
- санузел – приток – до 3 кубометров чистого воздуха для каждого 1 м2 помещения, вытяжная способность – от 90 м3/ч;
- столовая и кухня – приток до 3 кубометров, при отводе 90 м3/ч;
- гостиная – кратность притока – от 1;
- бытовки – приток – до 3 кубометров, вытяжка с кратностью 1.5.
Перед началом подготовки проектной документации для конкретного дома или определенных ее комнат, важно проанализировать доступную систему. На проектирование вентиляции уходит много времени, а главное – финансовых ресурсов
Для той же кухни может потребоваться только придаточная приточная установка, обеспечивающая внутреннее пространство свежим кислородом.
Итоговые данные должны полностью соответствовать нормам санитарным, пожарным, не говоря уже экономической целесообразности.
Каким образом осуществляется расчет
Если говорить в целом, то изначально осуществляется подсчет объема кислорода для каждых помещений, а затем и для всего дома. Осуществляется это простым образом: перемножается длина, ширина и высоты. Программа позволяет автоматизировать этот процесс.
Формулы по расчету аэродинамических показателей
- Оптимальный уровень воздухообмена подсчитывается для каждой комнаты. Осуществляется все по простой формуле: L = n*V, где V – объем комнаты или любого помещения, n – кратность обмена кислорода.
- Данные из п.1 подсчитываются для всех помещений квартиры, причем как по значению вытяжки, так и по притоку. Специализированные программы делают все подсчеты в автоматическом порядке.
- В идеальном варианте – подготовка технического задания со сбалансированными значениями ∑ Lпр = ∑ Lвыт.
Только после этого осуществляется проектирование системы вентиляции или вручную, или посредством программы.
Ventcalc
Программа среди проектировщиков считается наиболее простой и функциональной. Действительно, для создания схемы вентиляционной сети достаточно ввести требуемые исходные данные и программа предоставит готовый эскиз со всеми необходимыми данными для дальнейшего подбора оборудования.
Независимо от выбранного типа вентиляционной системы, данная утилита одинаково хорошо справляется с необходимыми расчетами. Функционал программы позволяет:
- Сделать расчет сечения воздухооотводов с учетом всех переменных.
- Расчет сопротивлений шахт и каналов. На основании расчетов программа автоматически подбирает вентиляционное оборудование.
- Расчет аэродинамического сопротивления сети.
- Сделать грамотный расчет естественной вентиляции.
- Определить оптимальное сечение вентиляционной шахты, которое обеспечит преобладание тяги над сопротивлением воздушной смеси при определенном ее расходе.
- Сделать расчет мощности нагрева калорифера.
Vent calc в максимально короткий срок выполнит необходимые расчеты, чем значительно упростит работу проектировщика. Достоинством этого ПО является то, что с 2010 г. Vent calc распространяется бесплатно. Язык интерфейса ПО – мультиязычная.
Magicad
Эта мощная утилита предназначена для выполнения расчетов и трехмерного проектирования инженерных сетей. Программа для проектирования вентиляции magicad включает в себя несколько базовых модулей, среди которых есть блок Мagicad -Вентиляция.
В качестве графической платформы утилита использует АutoСad или RevitMap. Данный программный комплекс дает возможность для:
- Создания схем вентиляции с из трассировкой как в ручном, так и в автоматическом режиме.
- Расстановки фасонных частей и другого оборудования.
- Подбора сечений шахт, каналов и воздуховодов.
- Расчета аэродинамического сопротивления воздуховодов и оборудования.
- Акустического расчета.
- Балансировки системы вентиляции в автоматическом режиме.
Программа Magicad имеет следующие возможности:
- Использование базы вентиляционного оборудования.
- Работы с текстовыми обозначениями элементов.
- Создание спецификаций материалов и оборудования;
- Контроль за пересекающимися элементами на эскизах и чертежах.
- Работа в 2D и 3D режимах.
- Экспорт данных в другие программы и многое другое.
Особенностью этой программы является наличие базы вентиляционного оборудования, которая содержит в себе огромное количество изделий, с полными данными о давлении расходе воздуха, размерах, и геометрии элемента, а также его шумовыми характеристиками и пр. При составлении чертежа, программа автоматически подберет фасонные изделия, при соединении двух воздуховодов – тройник или крестовину, если изменяется диаметр воздушного канала, то утилита Magicad сразу предложит необходимый переходник.
Программа Magicad позволяет проектировщику создавать проекты вентиляционных систем любой сложности в самый короткий срок.
Язык интерфейса –английский и русский. Стоимость полной локальной лицензионной версии – 4560 евро. Цена полной сетевой лицензии – 5700 евро. Есть специальные предложения по приобретению обновлений на 1, 2 и 3 года.
Для успешной работы с Magicad Вентиляция необходимо быть инженером, уметь работать с графической платформой АutoСad. Официальные представители разработчика нередко проводят онлайн-обучения работе в программе. Средняя стоимость такого обучения от 10 до 16 тыс. руб. за курс.
Программы для расчета
Так как проводить вычисления и строить схему вентиляции вручную – это очень трудоемкий и длительный процесс, были разработаны простые программы, которые способны сделать все действия самостоятельно. Рассмотрим несколько. Одна из таких программ расчета системы вентиляции – Vent-Clac. Чем она так хороша?
Подобная программа для расчетов и проектирования сетей считается одной из наиболее удобных и эффективных. Алгоритм работы этого приложения основывается на использовании формулы Альтшуля. Особенность программы в том, что она справляется хорошо как с расчетом вентиляции естественного типа, так и механического типа.
Так как ПО постоянно обновляется, стоит отметить, что последняя редакция приложения способно проводить и такие работы, как аэродинамические расчеты сопротивления всей системы вентиляции. Также может эффективно рассчитать другие дополнительные параметры, которые помогут в подборе предварительного оборудования. Для того чтобы провести эти вычисления, программе понадобятся такие данные, как расход воздуха в начале и в конце системы, а также длина основного воздуховода помещения.
Так как вручную рассчитывать все это долго и приходится разбивать вычисления на этапы, то данное приложение окажет существенную поддержку и сэкономит большое количество времени.
Состав проектной и рабочей документации
Все эти задачи, решенные при проектировании систем вентиляции, находят свое отражение в документации по этой системе.
- Первым этапом работ является разработка проектной документации (проект вентиляции, стадия «П»).
- Рабочая документация (рабочий проект вентиляции, стадия «Р») включает полный пакет документов.
Разработка проектной документации вентиляционной системы (проекта вентиляции, стадия «П») является одним из этапов проектирования, а создание рабочей документации (рабочего проекта вентиляции, стадия «Р») — финальная часть проектных работ.
Чтобы было понятнее, кратко раскроем эти понятия.
Проектная документация (проект вентиляции, стадия «П»)
Проектная документация (проект вентиляции, стадия «П») — это схематичное обозначение вентиляционного оборудования и материалов, без привязок и размеров, без узлов и пересечений, схематично отображает установку приборов, без аксонометрии и без спецификации. Разработанный на стадии «П» проект можно использовать для выполнения монтажа вентиляционной системы. Однако, в некоторых случаях объема проектной документации в проекте стадии «П» недостаточно для выполнения качественных монтажных работ по созданию системы вентиляции. В этом случае производится полный перечень работ по проектированию системы, результаты которого отражаются в рабочем проекте системы вентиляции.
Рабочая документация (рабочий проект вентиляции, стадия «Р»)
Рабочая документация (рабочий проект вентиляции, стадия «Р») по ГОСТам * — это точное обозначение вентиляционного оборудования и материалов, с привязками и размерами, с узлами и пересечениями, точно отображает установку приборов, с приведением аксонометрии, всех расчетов, пояснений и спецификаций.
* Под ГОСТами мы имеем ввиду широкое понятие, которое включает в себя государственные стандарты, систему проектной документации для строительства (СПДС), строительные нормы и правила (СНиПы) и т. п.
На нашем сайте можно ознакомиться подробнее с составом проекта вентиляции.
Визуализация проектов
Заказчику для демонстрации проектов по вентиляции могут быть предложены различные визуальные решения: видеоролики, иллюстрации и другие различные графические материалы.
Здесь можно увидеть визуальное представление вентиляционной камеры в 3D-иллюстрациях для наглядного представления общеобменной приточно-вытяжной системы вентиляции частного жилого дома.
Видео ниже показывает результаты эскизного проектирования системы вентиляции офисного центра на одном из этажей.
Формулы расчета вентиляции
Расчет по площади помещения
Это самый простой расчет. Для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения, независимо от количества людей.
Расчет по санитарно-гигиеническим нормам
По санитарным нормам для общественных и административно-бытовых зданий
на одного постоянно пребывающего в помещении человека необходимо 60 м3/час свежего воздуха, а на одного временного 20 м3/час.
В случае жилого помещения можно ориентироваться на то, в каком помещении сколько времени проводят жильцы. Например, для спальни рекомендуется принять, что хозяева находятся там постоянно (8 часов подряд), а для кабинета можно принять 1 человек — постоянно, и 1-2 временно.
Расчет по кратностям
В документе (СНиП 2.08.01-89* Жилые здания, Приложение 4) приведена таблица с кратностями воздухообмена по типам помещений (табл.1):
Помещения | Расчетная температура зимой,ºС | Требования к воздухообмену | ||
Приток | Вытяжка | |||
Общая комната, спальня, кабинет | 20 | 1-кратный | — | |
Кухня | 18 | — | По воздушному балансу квартиры, но не менее, м3/час | 90 |
Кухня-столовая | 20 | 1-кратный | ||
Ванная | 25 | — | 25 | |
Уборная | 20 | — | 50 | |
Совмещенный санузел | 25 | — | 50 | |
Помещение для стиральной машины в квартире | 18 | — | 0,5-кратный | |
Гардеробная для чистки и глажения одежды | 18 | — | 1,5-кратный | |
Вестибюль, общий коридор, лестничная клетка, прихожая квартиры | 16 | — | — | |
Электрощитовая | 5 | — | 0,5-кратный |
Здесь приведена сокращенная версия таблицы, если вы не нашли свой тип помещения — обратитесь к исходному документу (СНиП-у).
Кратность воздухообмена — это величина, которая означает, сколько раз в течение часа воздух в помещении
полностью заменяется на новый. Она напрямую зависит от объема помещения. То есть, однократный воздухообмен это когда в
течение часа в помещение подали и удалили объем воздуха, равный объему помещения; 0,5 кранный воздухообмен –
половине объема помещения и т.д. В этой таблице в двух последних колонках
указаны кратности и требования к воздухообмену в помещениях по притоку и
вытяжке воздуха соответственно.
Формула расчета вентиляции,
включающая нужное количество воздуха выглядит так:
L=n*V (м3/час) , где
n – нормируемая кратность воздухообмена, час-1;
V – объём помещения, м3.
Когда мы считаем воздухообмен для группы помещений в пределах одного
здания (к примеру, жилая квартира) или для здания в целом (коттедж), их
нужно рассматривать как единый воздушный объём. Этот объём должен
отвечать условию ∑ Lпр = ∑ Lвыт То есть, какое количество воздуха мы подаём, такое же должны и удалить.
Таким образом, последовательность расчета вентиляции по кратностям следующая:
- Считаем объем каждого помещения в доме (объем=высота * длина * ширина).
- Подсчитываем для каждого помещения требуемый воздухообмен по формуле L=n*V.
Для этого выбираем из таблицы 1 норму по кратности
воздухообмена. Для большинства помещений
нормируется только приток или только вытяжка. Для некоторых (например
кухня-столовая) и то, и другое. Прочерк означает, что для данного помещения нормы не установлены.
Для тех помещений, для которых вместо кратности
указан минимальный воздухообмен (например, 90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат будем увеличивать до требуемой величины.
Если в таблице нет какого-либо помещения, то норму воздухообмена для
него считаем, учитывая что для жилых помещений нормы регламентируют
подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3.
- Суммируем отдельно L тех помещений, для которых нормируется приток
воздуха, и отдельно L тех помещений, для которых нормируется вытяжка.
Получаем 2 цифры: ∑ Lпр и ∑ Lвыт - Составляем уравнение баланса ∑ Lпр = ∑ Lвыт.
Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр
увеличиваем значения воздухообмена для тех помещений, для которых мы во 2
пункте приняли воздухообмен равным минимально допустимому значению.
С этим читают
Основные моменты
В основе работ по проектированию лежат точные замеры и расчёты имеющихся параметров. Прежде всего, вам потребуется точный расчёт воздухообмена в помещении, который позволит в дальнейшем провести аэродинамические расчёты. При помощи этих данных происходит подбор размера и типа воздуховодов, а также наиболее оптимальная мощность вентиляционных установок. Разработка системы вентиляции должна осуществляться в соответствии с санитарно-гигиеническими, строительными и пожарными нормами и требованиями безопасности. Готовый проект необходимо утвердить в соответствующих инстанциях.
Формула расчёта воздухообмена в доме
Проект вентиляции на бумажном или электроном носителе способен помочь представить будущую систему точно и подробно. Благодаря применению современных компьютерных технологий учесть все функциональные особенности системы можно ещё на начальных стадиях проектирования.
Проектирование вентиляции дома – это разработка целой системы вентиляции с учётом особенностей помещения.
Для организации этого процесса необходимо использовать современное оборудование, отвечающее всем требованиям безопасности и комфорта. От качества воздуха в помещении зависит здоровье, самочувствие и настроение человека. Именно поэтому стоит ответственно подойти к проекту данных систем. Проектирование систем вентиляции и кондиционирования стоит доверять только проверенным фирмам и специалистам, имеющим опыт работы в данной области.
Благодаря тому, что на данном этапе развития можно подобрать оборудование любой сложности и цена также различается от выбранной фирмы
Важно выполнение СНиП и МГСН
При проектировании систем вентиляции вы должны чётко различать, какой именно тип вентиляции будет и какой бюджет запланирован на данное мероприятие. Фирма, которая специализируется в данном вопросе, рассчитает вам стоимость проекта, подберёт оборудование, подготовит всю необходимую документацию
Перед началом работы над будущей вентиляцией важно обозначить свои пожелания и задумки, возможно, это внесёт существенные коррективы в разработку
Проектирование начинает осуществляться, после того как заказчик предоставит специалисту следующую информацию:
- техническое задание;
- при заказе системы для предприятий общественного питания, производственного или технологического профиля требуется технологический проект;
- чертежи здания для оценки сложности работы.
Выбор приточной установки
Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел Расчет сопротивления сети).
Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.
Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².
Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.
Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.
После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:
- Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
- «Задушить» вентустановку с помощью балансировочных дроссель-клапанов, закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
- Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только 3-х ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
- Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.
Выбор оборудования
Чтобы вложить средства в оборудование, которое будет оптимальным для конкретного проекта, проводится расчет нескольких параметров:
- производительность системы по воздуху;
- рабочее давление, которое потребуется создавать вентилятором;
- мощность калорифера;
- скорость движения воздушных масс;
- площадь сечения воздуховода;
- уровень шума.
Можно самостоятельно рассчитать эти характеристики только в грубом приближении.
Производительность по воздуху
Для определения расхода воздуха необходимо поэтажный план объекта с указанием назначения каждого помещения и требуемой кратности обмена. Проектировщик должен знать, сколько раз в течение часа сменяется воздух в комнате. Например, для небольшого производственного помещения площадью в 100 м2 и высотой потолков 3 м при однократном обмене потребуется производительность 300 м3/ч, при двухкратном объеме – 600 м3/ч. Частота смены воздуха зависит от типа выполняемых работ, количества людей, характеристик технологического оборудования.
Расчет производительности вентиляционной системы проводится по двум параметрам: кратность обмена и количество людей в помещении. За основу для дальнейших вычислений принимают самое большое значение.
- Производительность по кратности обмена:
L=n*S*H, м3/ч
- n – это кратность воздухообмена, которая нормируется СНиП. Для жилых комнат она принимается равной 1, а для офисов – 2,5;
- S – площадь помещения, для которого рассчитывается система, м2;
- H – высота потолков, м.
- Производительность по количеству людей:
L=N*Lнорм, м3/ч
- N – среднее количество людей, работающих в помещении;
- Lнорм – нормированный объем потребления воздуха одним человеком. Для людей в состоянии покоя принимают 20 м3/ч, при физических нагрузках – 60 м3/ч, для офисных служащих – 40 м3/ч.
На основании этих расчетов подбирают вентилятор или приточную установку с учетом потерь мощности на сопротивление воздуховодов. Обычно в паспорте оборудования приведены таблицы или графики зависимости производительности от давления, по которым можно сориентироваться.
Мощность калорифера
Калорифер необходим для подогрева подаваемого воздуха до нужной температуры. Основные параметры для расчета:
- производительность системы;
- минимальная температура наружного воздуха (определяется по таблицам СНиП для конкретного региона);
- требуемая температура подаваемого воздуха (определяется по таблицам СНиП, для жилых помещений – не ниже 18 °С).
Для выбора калорифера рассчитывают максимальный ток потребления:
I=P/U, А
- P – мощность калорифера, Вт;
- U – напряжение, В. Для однофазного питания принимают 220 В, для трехфазного – 660 В.
При установке калориферов мощностью более 5 кВт необходимо трехфазное подключение. Если допустимая нагрузка получается меньше требуемой, можно выбрать менее мощное оборудование.
Еще один ванный параметр – температура, на которую прибор может нагреть воздух. Например, при минимальной температуре наружного воздуха -22 °С калорифер должен будет нагреть воздушный поток на 40 градусов, чтобы обеспечить в помещении комфортные +18 °С.
Формула для расчета:
ΔT=2,98*P/L, где
- P – мощность устройства, Вт;
- L – производительность системы, м3/ч;
- ΔT – требуемая разность температур.
Для жилых помещений обычно хватает моделей мощностью до 5 кВт, для офисов – 5-50 кВт. Когда электрические калориферы оказываются слишком затратными, устанавливают водяное оборудование, которое в качестве горячего теплоносителя использует воду из центральной системы отопления.
Расчет давления, скорости потока, уровня шума
Расчет воздухораспределительной системы начинают с проектирования воздуховодов. По готовой схеме вычисляют такие параметры:
- Давление. Оно определяется техническими возможностями вентилятора. При расчете учитывают количество поворотов в воздуховоде, места переходов с одного диаметра на другой. Чем больше таких участков в системе, тем выше должно быть давление в сети.
- Диаметр воздуховодов. Этот параметр влияет на скорость движения воздушных масс, которая обычно находится в пределах 2,5-4 м/с. При уменьшении диаметра увеличивается скорость, требуется не такой мощный вентилятор, но и уровень шума возрастает. Широкие воздуховоды работают тише, но их сложнее разместить в межпотолочном пространстве.
Для жилых помещений обычно используют гибкие воздуховоды с площадью поперечного сечения до 250 мм2 и распределительные решетки с максимальным размером 200*300 мм.
Автоматическое формирование спецификации и табличных документов
На основе разрабатываемой средствами Model Studio CS трехмерной информационной модели генерируется полный комплект табличной документации — спецификации оборудования и материалов, заказные спецификации, экспликации оборудования, таблица воздухообмена помещений и другие. Генерация происходит полностью в автоматическом режиме, пользователю необходимо лишь выбрать требуемый шаблон и формат приложения, в которое будет выгружен финальный вариант. На данный момент поддерживается сохранение табличных документов в форматах MS Word, MS Excel, Rich Text Format (RTF) и непосредственно на чертеже в виде таблиц AutoCAD или nanoCAD.
Спецификация оборудования, изделий и материалов генерируется автоматически
Для удобства работы с моделью, подготовки и выгрузки табличных документов в Model Studio CS предусмотрен специальный интерактивный инструмент Спецификатор. Спецификатор — это всегда доступное для просмотра специальное диалоговое окно, в котором в табличном виде заданной формы отображается состав текущей трехмерной модели (при необходимости пользователь может задать собственный вариант таблицы).
Перечень объектов в спецификаторе соответствует перечню объектов в модели
Выбирая позицию в спецификаторе, автоматически выбираются объекты модели, которые соответствуют данной позиции, что делает редактирование атрибутивной информации в модели более удобным и эффективным. Часть параметров можно назначить в самом спецификаторе, например, поле позиции, которое заполняется пользователем вручную или автоматически по порядку.