Устройство и принцип работы вакуумных выключателей

Гашение дуги в вакуумных выключателях

Рисунок 6

Электрическая прочность вакуумного промежутка во много раз боль­ше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах. Ра­бочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникающую дугу и застав­ляющее перемещаться ее через зазоры на дугогасительные контакты. Контакты представляют собой диски, разрезанные спиральными прорезя­ми на три сектора, по которым движется дуга. Материал контактов по­добран так, чтобы уменьшить количество испаряющегося металла. Вслед­ствие глубокого вакуума происходит быстрая диффузия заряженных частиц в окружающее про­странство и при первом переходе тока через нуль дуга гаснет. Подвод тока к контактам осуществляется с помощью медных стержней. Подвижный контакт крепится к верхнему фланцу с помощью сильфона из нержавеющей стали. Сильфон служит для обеспечения герметичности вакуумной камеры. Металлические экраны служат для выравнивания электрического поля и для защиты керамического корпуса от попадания паров металла, образующихся при гашении дуги.

Вакуумные выключатели применяются, как правило, на напряжении от 6 до 110 кВ, реже на напряжении 220-500 кВ.

Среди достоинств ВВ следует выделить:

— простая и надежная конструкция;

— высокая коммутационная устойчивость;

— сравнительно небольшие расходы на эксплуатацию и ремонт.

Недостатки:

— возникновение коммутационных перенапряжений при отключении токов нагрузки;

— малый ресурс дугогасительной камеры при коммутации тока к.з.

— сравнительно невысокая отключающая способность (по сравнению с элегазовыми и масляными аппаратами).

В воздушных выключателях гашение дуги происходит сжатым воздухом, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами.

Воздушные выключатели применяются на напряжение от 10 до 750 кВ.

Конструктивные схемы воздушных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительные устройства.

Воздушные выключатели имеют следующиедостоинства

взрыво- и пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий, малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки.Недостаткамивоздушных выключателей являются необходимость компрессорной установки, сложная конструкция ряда деталей и узлов, относительно высокая стоимость, трудность установки встроенных трансформаторов тока.

Магнитное дутье, как вариант гашение дуги

Магнитное дутье применяется в электромагнитных выключателях. Щелевая дугогасящая камера из жаропрочного материала – основной элемент электромагнитных выключателей. Магнитное дутье, как правило, создается с помощью электромагнита, который включается последовательно в контур дуги. За счет него электрическая дуга в выключателе растягивается, охлаждается и гаснет.

Включение

В отключенном положении выключателя контакты вакуумной камеры (ВДК) удерживаются в разомкнутом состоянии действием отключающей пружины, которое передаётся на подвижный контакт ВДК посредством тягового изолятора. Для включения модуля на обмотку электромагнитного привода разряжается на предварительно заряженный включающий конденсатор блока управления. Импульс тока, протекающий по обмотке электромагнитного привода в результате разряда конденсатора, создаёт магнитное поле в зазоре между якорем и плоским магнитопроводом.
По мере роста тока в обмотке электромагнитного привода сила электромагнитного притяжения между якорем и плоским магнитопроводом возрастает до величины, превышающей силу удержания, создаваемую пружиной отключения. В этот момент якорь привода начинает двигаться по направлению к магнитопроводу, толкая тяговый изолятор и подвижный контакт ВДК.
В процессе движения якоря по направлению к магнитопроводу воздушный зазор уменьшается, благодаря чему сила притяжения якоря увеличивается. Быстро растущая электромагнитная сила стремительно ускоряет движущиеся части модуля до скорости примерно 1 м/с. Такая скорость является оптимальной для процесса включения и позволяет избежать дребезга контактов при их соударении, существенно снижая при этом вероятность пробоя вакуумного промежутка до момента замыкания контактов.
Ускоряющий якорь генерирует в витках обмотки электромагнитного привода противо ЭДС, которая препятствует дальнейшему нарастанию тока в обмотке и даже несколько снижает его.
В момент замыкания контактов подвижный контакт останавливается, а якорь продолжает своё движение ещё на 2 миллиметра, поджимая контакты через пружину дополнительного поджатия контактов.
Достигнув плоского магнитопровода, якорь останавливается, примагнитившись к магнитопроводу привода. В момент остановки якоря он перестаёт индуцировать противо-ЭДС, что приводит к росту тока, необходимого для насыщения кольцевого постоянного магнита до достижения им необходимых магнитных свойств.
Намагниченный до насыщения кольцевой магнит создаёт мощный остаточный магнитный поток, достаточный для удержания якоря привода (и соответственно, контактов модуля) во включенном положении даже после отключения включающего тока вспомогательным контактом.
Испытания на стойкость к механическим воздействиям показали, что усилие удержания, развиваемого постоянным магнитом, достаточно для того, чтобы удерживать модуль во включенном положении так долго, как это необходимо по условиям эксплуатации, даже при воздействии вибрационных и ударных нагрузок.
Отключающая пружина привода также сжимается в процессе движения якоря, накапливая потенциальную энергию для выполнения операции отключения модуля.
Перемещение якоря передаётся на синхронизирующий вал, поворачивая его в процессе перемещения на угол 44°, для обеспечения индикации состояния модуля, управления вспомогательными контактами и приведения в действие блокировочных механизмов распредустройства.

Конструкция и принцип действия

Главная \ Продукция \ Вакуумные коммутационные аппараты (1,14; 10; 20; 27,5; 35; 110 кВ) \ Выключатели вакуумные высоковольтные 6-10 кВ \ Вакуумные выключатели ВБЭ-10-20 \ Конструкция и принцип действия

Устройство и работа выключателя

Выключатель представляет собой аппарат прямого действия. Операции включения выключателя осуществляются электромагнитным приводом прямого действия за счет тягового усилия электромагнита включения. Отключение выключателя (в том числе автоматическое отключение при токах короткого замыкания или перегрузках) осуществляется за счет энергии, запасенной пружинами выключателя при включении. Гашение дуги в выключателе осуществляется вакуумными дугогасительными камерами (КДВ). Электрическая дуга, благодаря специальной форме контактов, направляется в стороны от центра, вращается по поверхности контактов, распадается и гасится при переходе тока через ноль. Благодаря высокой электрической прочности вакуумного промежутка в течение долей микросекунд между контактами восстанавливается напряжение. Выключатель состоит из трех дугогасительных полюсов, закрепленных через опорные изоляторы на корпусе привода. Каждый полюс содержит вакуумную дугогасительную камеру (КДВ), механизм дополнительного пожатия контактов КДВ и токовыводы. Электромагнитный привод состоит из электромагнита включения, блока механических защелок, демпфирующего гидравлического устройства, электромагнита отключения и аварийных расцепителей. Электрическая схема блока питания и управления выключателем собрана на панели, закрепленной в корпусе привода. Между полюсами выключателя установлены изоляционные перегородки. В выключателях выкатного исполнения (рис.1 — 5) привод установлен на тележку, имеющую механизм блокировки, связанный с выключателем.

Включение выключателя

В исходном положении контакты камеры дугогасительной вакуумной разомкнуты, выключатель удерживается отключающей пружиной в отключенном положении. Оперативное включение производится подачей напряжения на электромагнит, якорь электромагнита втягивается и через блок защелок поворачивает вал привода. Рычаги, связанные с валом тяговыми изоляторами, замыкают контакты КДВ и создают усилие поджатия контактов КДВ. Одновременно при повороте вала производится взвод отключающей пружины, переключение блок—контактов узла контактного и постановка на механическую защелку. Происходит включение выключателя. Ручное неоперативное включение осуществляется поворотом вала привода вниз трубой, которая надевается на рычаг привода. Для ручного включения выключателя съемную крышку, необходимо снять. Ручное включение выключателя под нагрузку запрещается!

Отключение выключателя

При подаче сигнала на электромагнит отключения или на один из расцепителей максимального тока, или на расцепитель минимального напряжения, или на расцепитель от независимого источника тока тяги электромагнитов воздействуют на блок защелок. Блок защелок освобождает вал привода. За счет энергии, запасенной пружинами поджатия контактов КДВ блоков дугогасительных и отключающей пружины, вал привода выключателя возвращается в исходное положение. Происходит отключение выключателя. Механизм привода подготовлен к включению. Ручное оперативное и неоперативное отключение выключателя осуществляется красной кнопкой, расположенной на панели выключателя.

Область применения


Вакуумные выключатели являются представителями нового поколения среди коммутационной высоковольтной аппаратуры. Они более эффективны, экономичны по сравнению с традиционными воздушными и электромагнитными выключателями. Как показывает статистика, доля их применения в сетях с напряжением от 6 до 10 и даже 35 кВ стабильно растет. Так, например, высоковольтные линии в Китае практически полностью строятся вокруг таких коммутаторов. В развитых странах Евросоюза их доля превышает две трети. Такое соотношение достигается за счет более надежной, а главное, долговечной конструкции (паспортный показатель достигает 20 лет). Они довольно неприхотливы в обслуживании и эксплуатации, не требуют регулярной очистки, то есть, снижают амортизационные капиталовложения.

Установка и подключение прибора

Прежде чем начинать устанавливать вакуумный выключатель, необходимо провести осмотр всех внешне доступных элементов, дабы убедиться в отсутствии повреждений и дефектов. Затем производится чистка изоляционных поверхностей полюсов с помощью сухой безворсовой ветоши.

Не допускается внедрение оборудования в систему, если на изоляционных поверхностях присутствуют сколы, трещины, деформированные участки. Обязательно подлежит проверке схема вторичных цепей, а также подключение корпусной шины.

Проверка установленного прибора

Здесь важно тщательно проверить каждую деталь, каждый элемент крепежа. Высоковольтные аппараты не прощают даже малейшей ошибки

Перед установкой работоспособность выключателя следует проверить методом ручного включения (вхолостую без питания) и убедиться в правильности положения индикаторов панели управления. Затем нужно проверить наличие крышек полюсов. Если применяется аппаратура под номинал 1600А и выше, крышки защиты перед монтажом требуется снять.

Подключение непосредственно в сеть

Клеммы контактных наконечников проводников силовых кабелей перед присоединением к выводам выключателя необходимо зачистить.

Процедура зачистки отличается в зависимости от применяемого материала клемм:

  • Для медных и алюминиевых клемм без дополнительного покрытия зачистка осуществляется наждачной бумагой зернистостью М20 или ниже, с последующим обезжириванием поверхности металла.
  • Если клеммы медные или алюминиевые покрыты слоем серебра, их достаточно очистить безворсовой тканью.

Недопустимо применять кабели, серебряное покрытие клемм которых повреждено на площади более 5%. В этом случае повреждённый элемент требуется заменить. Подробнее о клеммах для соединения проводов можно прочесть в этом материале.

Внешние проводники подводятся к выводам вакуумного выключателя с таким расчётом, чтобы не создавались механические усилия на выводы прибора со стороны внешних проводников. Соединения производятся посредством болтовой сцепки с применением плоских упругих металлических шайб.

Как производится заземление?

Приборы стационарного исполнения подключаются к «земляной» площадке посредством болтового соединения (М12) непосредственно в точке, обозначенной маркировкой «Заземление».


Элементы конструкции аппаратной тележки и шасси выключателя, через которые выполняется заземление устройства. Как правило, эти точки отмечаются соответствующим знаком, нанесённым рядом с элементом

Область контактной точки «Заземление» перед соединением требуется обезжирить. Заземляющим проводником следует выбирать шину достаточного сечения (Правила устройства электроустановок), гибкий провод или проводник сплетённый жгутом. До накладки проводника на контактную площадку поверхности контакта смазать специальной смазкой (ЦИАТИМ-203).

Конструкция выкатного типа заземляется при помощи элементов аппаратной тележки. Заземление вакуумного выключателя осуществляется через конструкцию аппаратной тележки, для чего также имеются элементы крепежа.

Ввод устройства в эксплуатацию

Запуск устройства в эксплуатацию производится после дополнительной проверки установленного и подготовленного оборудования. В частности, проверяется надёжность заземления, состояние крепежа сборочных компонентов, доступ охлаждающей среды к потенциально нагревающимся элементам.

Поверхности токоведущих стержней, контактирующих с ламелями розеточных контактных групп, необходимо обработать небольшим объёмом смазки ЦИАТИМ. В целом, необходимо выполнить все процедуры, предусмотренные ПЭУ на случай приёмо-сдаточных испытаний, и убедиться в соответствии величины оперативного напряжения допустимым пределам.


Установка вакуумного выключателя. Монтажные работы проводит только квалифицированный персонал. Те же требования предъявляются к персоналу, который подбирается на обслуживание высоковольтного оборудования

Управлять вакуумным выключателем допускается персонал, имеющий разрешение на обслуживание электроустановок, функционирующих под напряжением выше 1000 вольт. Утверждённая группа допуска для обслуживающих лиц должна быть не ниже третьей. Перед началом работы с оборудованием, персонал проходит техминимум с целью изучения тонкостей конкретной модели оборудования.

Конструктивные особенности

Особенности работы и применения воздушных высоковольтных выключателей

Каждый высоковольтный вакуумный выключатель обладает своими характеристиками и конструктивными особенностями, так как используется в сетях с разным напряжением и током. Также разные производители вносят свои индивидуальные коррективы в устройство и конструкцию своих изделий. Но основные элементы всё же остаются неизменными.

Основные элементы конструкции вакуумного выключателя это:

Электрическая основная высоковольтная часть разделена между фазами и содержит следующие элементы:

В свою очередь, сама дугогасящая камера является тоже очень важным хоть и не разборным элементом, зачастую в случае неисправности они не ремонтируются, а заменяются новыми.

Вот основные её части и механизмы:

Выключатель управляется местным или дистанционным способом. В аварийных режимах отключается от релейной защиты или от противоаварийной автоматики (подается питание на электромагнит отключения и токопроводящие контакты размыкаются).

На данный момент некоторые производители изготавливают высоковольтные выключатели в комплекте с релейной защитой и противоаварийной автоматикой, такое устройство называется реклоузером.

Воздушные выключатели

В воздушных выключателях гашение дуги происходит сжатым воздухом при давлении 2-4 МПа, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами. Конструктивные схемы воз-душных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительное устройство.

В выключателях на большие номинальные токи имеется главный и дугогасительный контур подобно маломасляным выключателям МГ и МГГ. Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто. При отключении выключателя главные контакты размыкаются первыми, после чего весь ток проходит по дугогасительным контактам, заключенным в камере 2. К моменту размыкания этих контактов в камеру подается сжатый воздух из резервуара 1, создается мощное дутье, гасящее дугу. Дутье может быть продольным или поперечным.

Необходимый изоляционный промежуток между контактами в отключенном положении создается в дугогасительной камере путем разведения контактов на достаточное расстояние. Выключатели, выполненные по конструктивной схеме с открытым отделителем, изготовляются для внутренней установки на напряжение 15 и 20 кВ и ток до 20000 А (серия ВВГ). В данном типе выключателей после отключения отделителя 5 прекращается подача сжатого воздуха в камеры и дугогасительные контакты замыкаются.

Конструктивные схемы воздушных выключателей 1 – резервуар со сжатым воздухом; 2 – дугогасительная камера; 3 – шунтирующий резистор; 4 – главные контакты; 5 – отделитель; 6 – емкостный делитель напряжения на 110 кВ – два разрыва на фазу (г)

В воздушных выключателях для открытой установки на напряжение 35 кВ (ВВ-35) достаточно иметь один разрыв на фазу.

В выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5 и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения. При этом в дугогасительную камеру сжатый воздух не подается и контакты в ней замыкаются.

По данной конструктивной схеме созданы выключатели серии ВВ на напряжение до 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше должно быть разрывов в дугогасительной камере и в отделителе.

По конструктивной схеме рис, г выполняются воздухонаполненные выключатели серии ВВБ. Напряжение модуля ВВБ 110 кВ при давлении сжатого воздуха в гасительной камере 2 МПа. Номинальное напряжение модуля выключателя серии ВВБК (крупномодульного) составляет 220 кВ, а давление воздуха в гасительной камере 4 МПа. Аналогичную конструктивную схему имеют выключатели серии ВНВ: модуль напряжением 220 кВ при давлении 4 МПа.

Для выключателей серии ВВБ количество дугогасительных камер (модулей) зависит от напряжения (110 кВ – одна; 220 кВ – две; 330 кВ – четыре; 500 кВ – шесть; 750 кВ – восемь), а для крупномодульных выключателей (ВВБК, ВНВ) количество модулей соответст-венно в два раза меньше.

Устройство и принцип действия

Вакуумные выключатели предназначены для совершения коммутационных операций в электроснабжающих сетях высокого напряжения. Конструктивно вакуумный выключатель состоит из трех отдельных полюсов или колонок (по одной на каждую фазу). Все колонки устанавливаются на одном приводе посредством опорного изолятора из полимера, фарфора или текстолита. У каждой из них имеются два вывода для подключения ошиновки.

Общий вид вакуумного автоматического выключателя

Устройство вакуумного выключателя.

Из картинки ниже видно, что внутри устройство состоит из двух контактов, подведенных под соответствующие потенциалы полюсов. Один из них выполняется подвижным, второй стационарным, как и в других типах выключателей. Силовые контакты вакуумного выключателя располагаются внутри герметичной камеры, способной сохранять вакуум в течении длительного периода времени (несколько десятков лет). Для чего в состав камеры включаются специальные металлические сплавы и керамические добавки. Именно этот элемент стал камнем преткновения для реализации такого выключателя в 30-е годы прошлого века.

Современные технологии предоставляют возможность сохранения вакуума внутри емкости, в том числе, с учетом динамических нагрузок, которые ей приходится претерпевать во время коммутаций. Для постоянного поддержания состояния сильно разреженной газовой среды, внутри вакуумной камеры, устройство комплектуется сильфонным компонентом. Он исключает возможность проникновения воздуха или другого газа внутрь вакуумной камеры при перемещении подвижного контакта.

Конструкция вакуумного выключателя

Принцип гашения электрической дуги.

При разрыве контактов между поверхностями возникает ионизация пространства. Если в воздушных выключателях с методом электромагнитного дутья эту ионизацию искусственно растягивают на несколько метров, а в элегазовых и масляных выключателях стараются погасить диэлектрическим материалом, то в вакуумных применяется другая технология. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное к выделению заряженных частиц. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла.

Различные этапы образования плазмы

Начало разведения контактов

Развитие ионизации

Заключительные процессы

Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения, их место быстро занимает пустое пространство с высокой электрической прочностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Но чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.

Сфера применения

Если первые модели, выпущенные еще в СССР, обеспечивали отключение, сравнительно небольших нагрузок из-за конструктивного несовершенства вакуумной камеры и технических характеристик контактов, то современные модели могут похвастаться куда более термоустойчивым и прочным материалом поверхности. Это обуславливает возможность установки таких коммутационных агрегатов практически во всех отраслях промышленности и народного хозяйства. Сегодня вакуумные выключатели используются в таких сферах:

  • В распределительных электроустановках как электрических станций, так и распределительных подстанций;
  • В металлургии для питания печных трансформаторов, снабжающих сталеплавильное оборудование;
  • В нефтегазовой и химической промышленности на пунктах перекачки, переключающих пунктах и трансформаторных подстанциях;
  • Для работы первичных и вторичных цепей тяговых подстанций на железнодорожном транспорте, осуществляет питание вспомогательного оборудования и не тяговых потребителей;
  • На горнодобывающих предприятиях для питания комбайнов, экскаваторов и других видов тяжелой техники от комплектных трансформаторных подстанций.

В любой, из вышеперечисленных отраслей народного хозяйствования, вакуумные выключатели повсеместно вытесняют устаревшие масляные и воздушные модели.

Характеристики вакуумных выключателей

  1. Главная →
  2. Статьи →

Главным предназначением вакуумных выключателей является функционирование в отсеках КРУ в трехфазных токопроводящих цепях с частотой колебания 50 Гц и отдельной или замененной нейтралью, помимо этого они разработаны для промышленных шкафов, где выступают в качестве контролирующих звеньев входящей электроэнергии. Они отлично справляются с переключением, размыканием и замыканием магистральных кабелей без ущерба для управляющих контактов.

В соответствии с характеристиками вакуумных выключателей допускается их применение для запуска и прерывания работы двигателей асинхронного типа с ротором замкнутым накоротко или фазного типа. Они прекрасно справляются с замедлением момента вращения представленных двигателей противотоком и прекращение работы электромашин с медленно вращающимся ротором.

Продолжительность эксплуатирования выключателя до первого капитального ремонта в среднем составляет 12 лет, списывать отработанный механизм рекомендуется не позже чем через четверть века.

Важным отличаем вакуумных выключателей является возможность непрерывность работы с частыми коммутационными операциями. Выключатели с приводом, работающим за счет взаимодействия электромагнита и ферромагнита способны осуществлять коммутацию электрических схем в стандартном и аварийном режимах в трехфазных токопроводящих цепях с частотой колебания 50-60 Гц, где присутствует изолированная нейтраль и стандартное напряжение не превышает 12 кВ.

Благодаря существующим характеристикам вакуумных выключателей можно назвать их идеальными с точки зрения экологии. Они практически безопасны для окружающей среды, при работе не осуществляют вредных выбросов в атмосферу. Абсолютная герметичность повышает надежность и количество возможных совершаемых коммутаций в течение всего срока эксплуатации. Нижайшим температурным приделом становиться отметка -60ͦС. Представленное оборудование может работать как в автоматическом, так и ручном режиме. Исходя из представленных параметров, вакуумные выключатели способны полноценно функционировать даже в сложных климатических условиях. Устройство беспрепятственного разъединения привода способно остановить работу выключателя в произвольный момент, несмотря на положение механизма. К тому же благодаря небольшим размерам и массе, а так же пожаро- и взрывобезопасности их установку можно производить вблизи агрессивной окружающей среды.

Выключатели вакуумного типа рассчитаны на применение в составе подстанций рассчитанных на 110 -220 кВ с трансформаторами тока и напряжения не содержащими масла и элегаза. Такие подстанции особенно актуально эксплуатировать в районах с жесткими экологическими ограничениями к промышленному оборудованию.

Модернизированные разработки в сфере производства вакуумных выключателей рассчитаны на длительный промежуток времени, поэтому постоянно обновляемая элементная база позволяет совершенствовать распределительные устройства для высоковольтных цепей и проектировать новейшие блочно-модульные системы электроснабжения потребителей.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий