Надежность измерительных трансформаторов напряжения в сети с изолированной нейтралью
Простой измерительный аппарат предназначен для понижения номиналов напряжения, которое подается на измерители и защитные реле, подключенные к сети 6-10 кВ. Трансформатор исправно работает только в условиях заземления нейтрали.
При феррорезонансных реакциях (обрыв фазы ЛЭП, прикосновение ветвями, стекание капель росы по проводам, некорректная коммутация) существуют риски поломок трансформаторов напряжения. Частота сбоев составляет 17 и 25 Гц. В этих условиях через первичную обмотку протекает сверхток и она перегорает.
Если используется схема «Звезда-Звезда», в условиях повышения напряжения повышается индукция магнитопровода. Прибор перегорает. Предотвратить этот процесс можно при помощи:
- уменьшения показателей рабочей индукции;
- подключения в сети устройств, демпфирующих сопротивление;
- создания трехфазного устройства с общей магнитной пятистержневой системой;
- эксплуатации аппаратов, подключенный в сеть при размыкании треугольника;
- заземления нейтрали посредством реактора-токоограничителя.
Классификация трансформаторов тока
Трансформаторы тока принято классифицировать по следующим признакам:
- В зависимости от назначения их разделяют на:
- защитные;
- измерительные;
- промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
- лабораторные.
- По типу установки разделяют устройства:
- наружной установки (размещаемые в ОРУ);
- внутренней установки (размещаемые в ЗРУ);
- встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
- накладные — устанавливаемые сверху на проходные изоляторы;
- переносные (для лабораторных испытаний и диагностических измерений).
- Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
- многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
- одновитковые;
- шинные.
- По способу исполнения изоляции ТТ разбивают на устройства:
- с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
- с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
- имеющие заливку из компаунда.
- По количеству ступеней трансформации ТТ бывают:
- одноступенчатые;
- двухступенчатые (каскадные).
- Исходя из номинального напряжения различают:
- ТТ с номинальным напряжением — выше 1 кВ;
- ТТ с напряжением – до 1 кВ.
Отличие от трансформатора напряжения
Одним из некоторых отличий является способ создания изоляции между двумя обмотками.
Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.
Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки.
Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии.
Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.
Коэффициент трансформации
Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.
Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.
Установка
Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники.
Прибор ставится одним мастером при помощи крепежных зажимов.
Стационарные требуют оборудования фундамента, монтажа несущих стоек.
Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.
Контроль
Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.
Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.
Безопасность
Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.
Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.
Как подключить электросчетчик через трансформаторы тока?
Схем такого подключения существует несколько. Разберем все эти схемы применительно к трехфазному варианту включения. Для чего нужны электросчетчики? Вообще счетчики нужны для того, чтобы учитывать электрическую энергию, потребленную в трех- и четырехпроводных сетях с частотой тока, равной 50 герц.Счетчики трехфазного типа бывают следующих видов:
- 3*57.7/100 В;
- 3*230/400 В.
К источнику электроэнергии такие счетчики необходимо подключать с использованием измерительных трансформаторов тока, рассчитанных на вторичный ток 5 А и трансформаторов напряжения со вторичным напряжением 100 В.
Рассматриваемые тут схемы применимы к любым типам счетчиков (и к аппаратам индукционного типа, и к электронным).
Первое, что необходимо помнить, выполняя подключение, это то, что при подключении необходимо соблюдение полярности подключения обмоток (Л1, Л2 – первичная; И1, И2 – вторичная) у трансформаторов тока. Полярность обмоток трансформаторов напряжения, так же, подлежит обязательной перепроверке. Сами трансформаторы, тоже нужно выбирать правильно.
О принципах подключения с использованием трансформаторов тока
Начнем рассматривать схемы подключения со счетчиков, имеющих полукосвенное включение. Таких схем существует несколько.
Десятипроводная
В этой схеме разделены цепи питания по току и напряжению, что придает немалый плюс из соображения электрической безопасности.
Отрицательная сторона этой схемы – проводов для подключения надо много.
Теперь разберем назначение имеющихся зажимов:
- Зажим входного провода для фазы А;
- Зажим входного провода измерительной обмотки фазы А;
- Зажим выходного провода для фазы А;
- Зажим входного провода фазы В;
- Зажим входного провода измерительной обмотки фазы В;
- Зажим выходного провода для фазы В;
- Зажим входного провода для фазы С;
- Зажим входного провода измерительной обмотки фазы С;
- Зажим выходного провода для фазы С;
- Зажим входного нулевого провода;
- Зажим нулевого провода.
Контакты трансформаторов тока:
- Л1 – контакт входа фазной (силовой) линии;
- Л2 – контакт выхода фазной линии (нагрузки);
- И1 – контакт входа обмотки измерения;
- И2 – контакт выхода обмотки измерения.
Вот описание схемы такого подключения.
Токовые трансформаторы подключать нужно в разрыв фазных проводов клеммами Л1 и Л2.
Фаза А подключается к клемме Л1 трансформатора тока ТТ1, туда же подключается клемма 2 счетчика. Клемма 1 подключается к контакту И1 ТТ1.
Контакты И2 трансформаторов тока ТТ1 и ТТ2 нужно соединить вместе, в эту же точку подключают контакты 6 и 10 счетчика, после чего все это требуется соединить с нейтралью.
Контакты Л2 всех ТТ подключаются к нагрузке. Теперь рассмотрим подключение остальных контактов:
- Контакт 3 счетчика подключаем на И2 ТТ1;
- Контакт 4 счетчика – И1 ТТ2;
- Контакт 5 счетчика – вход фазы В и клемма Л1 ТТ2;
- Контакт 7 счетчика – клемма И1 ТТ3;
- Контакт 8 счетчика – вход фазы С и клемма Л1 ТТ3;
- Контакт 9 счетчика – клемма И2 ТТ3.
Подключение токовых трансформаторов по схеме «звезда»
В такой схеме нужно меньшее число проводов, чтобы выполнить подключение. В этой схеме клеммы И2 всех токовых трансформаторов, соединяясь вместе, подключаются к клемме 11 счетчика. Контакты 3, 6, 9 и 10, соединившись вместе, подключаем на нулевой провод. Остальные клеммы подключаем так же, как и в предыдущем варианте.
Схема подключения с применением испытательной клеммной коробки
Существует специальное требование для выполнения подключения электросчетчиков через трансформаторы (ПУЭ, гл1.5, п1.5.23), говорящее о том, что это подключение необходимо выполнять с применением испытательного блока (коробки).
Присутствие такой коробки (блока) дает возможность производить замыкание вторичных обмоток токовых трансформаторов, подключить эталонный (образцовый) счетчик без отключения нагрузки и выполнять смену счетчиков, производя отключение всех цепей в испытательной коробке.
Без внимания оставим только одну схему – семипроводную (иначе называемую схемой, имеющей совмещенные цепи напряжения и тока). Не рассматриваем ее по той причине, что такая схема устарела.
Существенным ее минусом считается то, что у нее имеется связь гальванического типа между входными и выходными цепями, а это является источником немалой опасности для тех, кто будет обслуживать электросчетчики.
Вот мы и рассмотрели все существующие схемы подключения электросчетчиков с применением трансформаторов тока. Какой из них использовать, индивидуальное дело каждого. Единственное, что необходимо учитывать при этом, так это индивидуальные особенности места необходимой установки прибора и не забывать про требования специальных правил ПУЭ.
Поверка
Поверка измерительных трансформаторов, трансформаторов напряжения, поверки трансформаторов тока всех возможных видов не имеют одного фиксированного срока. Разные типы и модели имеют свою периодичность поверочных мер.
Межповерочный интервал находится в диапазоне 4–16 лет. Например (модель — срок в годах):
- ТТИ-А — 5;
- ТОП — 8;
- ТШП — 16;
- ТОЛ-10 — 8;
- ТПЛ-10 — 8.
Узнать сроки можно из таких источников:
- паспорт изделия. Самый простой способ, так как данная информация в технической документации на такой товар обязательная. Если оригинальные бумаги утеряны, то можно направить запрос производителю. Примерные данные можно узнать из интернета — в сети есть сканы и образцы паспортов;
- у завода-изготовителя;
- в сертификате предыдущей процедуры;
- ГОСТ 7746-2015.
Поверки нужны для допуска к эксплуатации, мероприятие осуществляют специальные аккредитованные и лицензированные учреждения, лаборатории, структуры энергетических компаний. Исполнитель должен иметь соответствующее свидетельство. После мероприятия его проведение и состояние изделия подтверждается поверительным клеймом, пломбой, отметкой в паспорте, протоколом.
Основная цель поверки — определить погрешность. По непригодным изделиям гасят клеймо, вносят запись в паспорт, выдают извещение о непригодности, аннулируют предыдущие свидетельства.
При тестировании используют несколько методик и приборов (мегаомметры, вольтметры, амперметры, приборы сравнения токов). Подробно процедура прописана в ГОСТе 8.217-2003.
Выбор числа трансформаторов
Однотрансформаторные подстанции используются в двух случаях. Во-первых, для объектов III категории электроснабжения. Во-вторых, для потребителей, имеющих возможность резервирования электроснабжения с помощью АВР (автоматического включения резерва) с другого источника питания.
При питании потребителей I и II категории в аварийном режиме на двухтрансформаторной подстанции после срабатывания АВР целый трансформатор принимает на себя нагрузку неисправного. Поэтому его перегрузочной способности должно хватить на время замены вышедшего из строя трансформатора. В нормальном режиме трансформаторы работают недогруженными, что экономически нецелесообразно. Поэтому при аварийной ситуации некоторые потребители III категории электроснабжения отключают от сети.
Перерыв питания объектов II категории ограничен временем в одни сутки. Для восстановления схемы необходим стратегический складской резерв оборудования необходимого для ликвидации аварии. При этом мощность нового трансформатора должна быть идентична заменяемому. Таким образом, сокращается количество резервного оборудования.
Принцип работы трансформатора
Принцип работы трансформатора основан на явлении электромагнитной индукции.
Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.
При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.
В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.
Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.
Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.
Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.
Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.
Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.
Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.
Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.
Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.
Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.
Расчет МТЗ линии
3.1. Определим ток срабатывания МТЗ по условию отстройки от самозапуска двигателей нагрузки после восстановления питания действием автоматики по выражению 1-1 :
где:
- kн = 1,1 – 1,15 – коэффициент надежности, берется по ана0логии из расчета ТО;
- kв — коэффициент возврата, для цифровых терминалов рекомендуется принимать – 0,96, для Sepam принимается 0,935;
- kсзп. – коэффициент самозапуска, в связи с тем, что в данном примере линия питает только бытовую нагрузку (двигательная нагрузка — отсутствует), по опыту эксплуатации и проведенных исследований рекомендуется принимать kсзп. = 1,2 – 1,3 , при условии, что время срабатывания защиты будет не менее 0,5 с.
Если же у вас в виде нагрузки преобладают асинхронные двигатели напряжением до 1000 В, в этом случае нужно определить коэффициент самозапуска.
В качестве примера, расчет коэффициента самозапуска, рассмотрен в статье: «Пример выбора уставок секционного выключателя 6(10) кВ».
Iраб.макс. – максимальный рабочий ток линии, то есть Iраб.макс. – это сумма номинальных токов всех трансформаторов, питаемых по защищаемой линии, без учета коэффициента загрузки трансформаторов.
Определяя Iраб.макс. без учета коэффициента загрузки, мы создаем определенный расчетный запас на несколько лет.
3.2. Определяем вторичный ток срабатывания реле по выражению 1-3 :
3.3. Определяем коэффициент чувствительности при двухфазном КЗ в основной зоне действия защиты (точка КЗ с наименьшим током КЗ) по выражению 1-5 :
3.4. Определяем коэффициент чувствительности в зоне резервирования, т.е. когда КЗ у нас на шинах 0,4 кВ трансформаторов ответвления.
3.4.1. Определим токи КЗ за трансформаторами:
3.4.2. Определяем коэффициенты чувствительности при двухфазном КЗ в зоне резервирования:
Согласно ПУЭ 7-издание пункт 3.2.25 kч ≥1,2. Очень часто МТЗ не чувствительна к повреждениям за маломощными трансформаторами, в этом случае, допускается не резервировать отключение КЗ за трансформаторами, согласно ПУЭ 7-издание пункт 3.2.17.
3.5. Определяем ток срабатывания МТЗ по условию согласования с плавкими вставками предохранителей трансформаторов по выражению 4.3 :
где:
- kотс. = 1,3 – коэффициент отстройки;
- k”отс. = 2 – коэффициент отстройки от номинального тока плавкой вставки предохранителей;
- Iвс.ном.макс. – наибольший из номинальных токов плавких вставок предохранителей, А;
- ∑Iраб.макс. – суммарный ток нагрузки неповрежденных присоединений, А.
Если же в место предохранителя у вас установлен автоматический выключатель, то ток срабатывания определяется по формуле 4.4 :
Предварительно принимает наибольший ток срабатывания МТЗ Iс.з. = 195 A.
3.6. Определяем выдержку времени МТЗ с независимой времятоковой характеристикой.
Как видно из рис. П-11 при токе МТЗ Iс.з. = 195 A время плавления плавкой вставки достигает 8 с, что неприемлемо, поэтому нужно увеличить ток срабатывания МТЗ, что бы уменьшить время срабатывания.
Построим карту селективности для предохранителя ПКТ-50 по следующим точкам используя типовую времятоковую характеристику (см. рис. П-11): 200А – 8 с, 400 А – 0,55 с, 500 А – 0,3 с, 600 А – 0,18 с, 700 А – 0,14 с, 800 А – 0,09 с, 900 А – 0,07 с, 1000 А – 0,05 с.
В соответствии с ГОСТ 2213-79 отклонения значения ожидаемого тока КЗ при данном времени плавления плавкого элемента tпл. от значения тока КЗ, получаемого по типовой времятоковой характеристике плавления, не должно превышать ±20%.
Исходя из этого, типовая характеристика предохранителя типа ПКТ 50 должна быть смещена вправо на 20%.
Построим времятоковую характеристику с учетом 20% по следующим точкам:
- 200А + 20% = 240 А – 8 с;
- 400А + 20% = 480 А – 0,55 с;
- 500А + 20% = 600 А – 0,3 с;
- 600А + 20% = 720 А – 0,18 с;
- 700А + 20% = 840 А – 014 с;
- 800А + 20% = 960 А – 0,09 с;
- 900А + 20% = 1080 А – 0,07 с;
- 1000А + 20% = 1200 А – 0,05 с;
Исходя из времятоковой характеристики плавких предохранителей, принимаем ток срабатывания МТЗ Iс.з. = 500 A, при таком токе плавкая вставка предохранителя расплавится за время tвс = 0,3 с.
Согласно ступень селективности между защитой линии 10 кВ и предохранителем должна быть в пределах ∆t = 0,5 – 0,7 с.
3.6.1. Определяем время срабатывания МТЗ линии:
tс.з. = tвс + ∆t = 0,3 + 0,5 = 0,8 с
Принимает ток срабатывания МТЗ Iс.з. = 500 A и время срабатывания МТЗ tс.з. = 0,8 с.
Литература:
1. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г. 2. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г. 3. Расчеты релейной защиты и автоматики распределительных сетей. М. А. Шабад, 2003г. 4. СТО ДИВГ-059-2017 «Релейная защита распределительных сетей 6-10 кВ. Расчет уставок. Методические указания» ООО «НТЦ «Механотроника» 2017 г. 5. Расчет токов короткого замыкания для релейной защиты. И.Л.Небрат. 1998 г.
СХЕМНЫЕ РЕШЕНИЯ ПО ОРГАНИЗАЦИИ УЧЕТА ЭЛЕКТРОЭНЕРГИИ В ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЯХ
РИС. 1
. СХЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ В ЖИЛЫХ ДОМАХ ДО 9 ЭТАЖЕЙ ВКЛЮЧИТЕЛЬНО
РИС. 2
. СХЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ В ЖИЛЫХ ДОМАХ 10 ЭТАЖЕЙ И ВЫШЕ
ПРИМЕЧАНИЕ:
1. В общежитиях до 10 этажей схема выполняется без АВР.
РИС. 3.
СХЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ В ОБЩЕЖИТИЯХ
РИС. 4.
СХЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ В ОБЩЕСТВЕННЫХ ЗДАНИЯХ С НЕСКОЛЬКИМИ ПОТРЕБИТЕЛЯМИ
РИС. 5
. СХЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ В ОБЩЕСТВЕННЫХ ЗДАНИЯХ ПРИ ВСТРОЕННОЙ ТП
РИС. 6. С
ХЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ В ЖИЛЫХ ДОМАХ ДО 9 ЭТАЖЕЙ ВКЛЮЧИТЕЛЬНО С УСТАНОВКОЙ СЧЕТЧИКОВ КОНТРОЛЬНОГО УЧЕТА НА ЛИНИЯХ ПИТАНИЯ КВАРТИР
РИС. 7.
СХЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ В ЖИЛЫХ ДОМАХ 10 ЭТАЖЕЙ И ВЫШЕ С УСТАНОВКОЙ СЧЕТЧИКОВ КОНТРОЛЬНОГО УЧЕТА НА ЛИНИЯХ ПИТАНИЯ КВАРТИР
Выбор силового трансформатора по расчетной мощности.
Для выбора используют требования нормативных документов
Таблица №6 – Зависимости коэффициентов допустимой перегрузки масляных трансформаторов для одно, двух и трехтрансформаторных подстанций и коэффициента загрузки в обычном режиме работы
Коэффициент допустимой перегрузки масляного трансформатора, определенный согласно ГОСТ 14209-85 | Коэффициент загрузки масляного трансформатора в нормальном режиме | |
двухтрансформаторная подстанция | трехтрансформаторная подстанция | |
1,0 | 0,5 | 0,666 |
1,1 | 0,55 | 0,735 |
1,2 | 0,6 | 0,8 |
1,3 | 0,65 | 0,86 |
1,4 | 0,7 | 0,93 |
Производитель электрооборудования, предлагая покупателю трансформатор, предоставляет сведения о разрешенных перегрузках.
По нормам СН 174-75 «Инструкция по проектированию электроснабжения промышленных предприятий» для каждого объекта принимают различные коэффициенты загрузки:
Двухтрансформаторная подстанция для нагрузки I категории – 0,65 до 0,7.
Подстанция с одним трансформатором с резервированием для нагрузки II категории – от 0,7 до 0,8.
Для нагрузки категории II и III с использованием резерва – 0,9-0,95.
Таким образом, можно сделать вывод, что нормальный режим трансформатора – это загруженность на 90 или даже 95%.
Выбор трансформатора по расчетной мощности заключается в сравнении полной мощности объекта (кВА) и интервалами допустимой нагрузки тр-ров для различных типов потребителей в аварийном и нормальном режимах работы. Руководствуются методикой выбора мощности силового трансформатора и нормативными документами.
Нормативные документы по выбору силовых трансформаторов:
. Проектирование электроснабжения промышленных предприятий. Нормы технологического проектирования (РФ, вместо
). Указания по выбору числа и мощности тр-ров цеховых ТП – пп 6. 4. 3 – 6. 4. 10Методические указания по выбору мощности силовых трансформаторов 10/0,4 кВ (РФ).
. «Руководство по нагрузке силовых масляных трансформаторов».
Как рассчитать диаметр провода для любой обмотки?
Чем толще, тем лучше, но с условием, что он поместится в окно магнитопровода. Если окно небольшое, то желательно посчитать ток каждой наматываемой обмотки, чтобы подобрать оптимальный диаметр провода из имеющихся в наличии.
Рассчитать ток катушки можно по формуле:
I = P / U
I – ток обмотки,
P – мощность потребляемая от данной обмотки,
U – действующее напряжение данной обмотки.
Например, у меня потребляемая мощность 31 Ватт и вся она будет отдаваться катушками “III” и “IV”.
31 / (12,8+12,8) = 1,2 Ампер
Диаметр провода можно вычислить по формуле:
D = 1,13 √(I / j)
D – диаметр провода в мм,
I – ток обмотки в Амперах,
j – плотность тока в Ампер/мм².
При этом плотность тока можно выбрать по таблице.
Конструкция трансформатора | Плотность тока (а/мм2) при мощности трансформатора (Вт) | ||||
5-10 | 10-50 | 50-150 | 150-300 | 300-1000 | |
Однокаркасная | 3,0-4,0 | 2,5-3,0 | 2,0-2,5 | 1,7-2,0 | 1,4-1,7 |
Двухкаркасная | 3,5-4,0 | 2,7-3,5 | 2,4-2,7 | 2,0-2,5 | 1,7-2,3 |
Кольцевая | 4,5-5,0 | 4,0-4,5 | 3,5-4,5 | 3,0-3,5 | 2,5-3,0 |
Пример:
Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.
А плотность тока я выбрал – 2,5 А/ мм².
1,13√ (1,2 / 2,5) = 0,78 мм
У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.
На картинке два варианта конструкции каркаса: А – обычная, В– секционная.
- Количество витков в одном слое.
- Количество слоёв.
Ширина моего несекционированного каркаса 40мм.
Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.
124 * 1,08 * 1,1 : 40 ≈ 3,68 слоя
1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.
Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.
Определяем толщину обмотки:
1,08 * 4 ≈ 4,5 мм
У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.
Ток катушки “II” вряд ли будет больше чем – 100мА.
1,13√ (0,1 / 2,5) = 0,23 мм
Диметр провода катушки “II” – 0,23мм.
Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.
Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.
Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.
Длина проводов будет равна:
L = p * ω * 1,2
L – длина провода,
p – периметр каркаса в середине намотки,
ω – количество витков,
1,2* – коэффициент.
* Укладывать обмотку при намотке в несколько проводов сложно и утомительно, поэтому лучше перестраховаться и использовать этот коэффициент, компенсирующий ошибки расчёта и неаккуратной укладки.
Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.
Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.
Закрепить конец провода можно обычными нитками.
Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.
Если катушка разделена на секции для первичных и вторичных обмоток, то тогда и вовсе можно обойтись без изоляционных прокладок.
Монтаж и стоимость трансформаторов тока
Если владелец объекта недвижимости не разбирается в электрооборудовании, то ему необходимо поручить проведение монтажных работ высококвалифицированному специалисту. Данные мероприятия должны выполняться при полном отключении электрического питания. Трансформатор тока, правильно подобранный по мощности, может фиксироваться следующим образом:
- На вертикальных поверхностях. На стену крепится дин-рейка, посредством которой в дальнейшем фиксируется устройство.
- В специальные шкафы, предназначенные для монтажа трансформаторов тока.
- На пусковые панели.
- Если монтаж будет проводиться на открытой местности, то предварительно придется установить электрический щит, в котором будет зафиксирован прибор.
Внимание! Стоимость трансформаторов тока напрямую зависит от их мощности, а также от других рабочих параметров. Цена на устройства стартует с 30 000 рублей, и может превышать 100 000 руб.. Владельцы загородных домов и городских квартир стремятся надежно защитить свою бытовую технику от перепадов напряжения в электрической сети
Для этого они задействуют трансформаторы тока, которые следует выбирать в зависимости от мощности потребления приборов. В процессе выбора им нужно обращать внимание на технические характеристики и эксплуатационные параметры. Если собственник объекта недвижимости не может подобрать устройство, ему нужно обратиться за помощью к профессионалам
Владельцы загородных домов и городских квартир стремятся надежно защитить свою бытовую технику от перепадов напряжения в электрической сети. Для этого они задействуют трансформаторы тока, которые следует выбирать в зависимости от мощности потребления приборов
В процессе выбора им нужно обращать внимание на технические характеристики и эксплуатационные параметры. Если собственник объекта недвижимости не может подобрать устройство, ему нужно обратиться за помощью к профессионалам