Расчёт винтов ветряных установок
При конструировании ветряка обычно применяются два вида винтов:
- Вращение в горизонтальной плоскости (крыльчатые).
- Вращение в вертикальной плоскости (ротор Савониуса, ротор Дарье).
Конструкции винтов с вращением в любой из плоскостей можно рассчитать при помощи формулы:
Z= L*W/60/V
Для этой формулы: Z – степень быстроходности (тихоходности) винта; L – размер длины описываемой лопастями окружности; W – скорость (частота) вращения винта; V – скорость потока воздуха.
Такой выглядит конструкция винта под названием «Ротор Дарье». Этот вариант пропеллера считается эффективным при изготовлении ветрогенераторов небольшой мощности и размеров. Расчёт винта имеет некоторые особенности
Отталкиваясь от этой формулы, можно легко рассчитать число оборотов W – скорость вращения. А рабочее соотношение оборотов и скорости ветра можно найти в таблицах, которые доступны в сети. Например, для винта с двумя лопастями и Z=5, справедливо следующее соотношение:
Число лопастей | Степень быстроходности | Скорость ветра м/с |
2 | 5 | 330 |
Также одним из важных показателей винта ветряка является шаг. Этот параметр можно определить, если воспользоваться формулой:
H=2πR* tg α
Здесь: 2π – константа (2*3.14); R – радиус, описываемый лопастью; tg α – угол сечения.
Расчёт и выбор ветрогенератора
На что нужно обращать внимание при выборе ветрогенератора. Для начала поймите, что зарубежные дорогие модели необязательно будут оптимальным решением. Здесь нужно исходить из ваших потребностей в выработке электричества
Так, что подсчитайте, сколько электричества вы будете расходовать
Здесь нужно исходить из ваших потребностей в выработке электричества. Так, что подсчитайте, сколько электричества вы будете расходовать.
Ветрогенератор с геликоидным ротором
При выборе стоит учитывать тот факт, что все модели ветрогенераторов рассчитаны на свою скорость ветра. То есть, они выдают мощность, указанную производителем, только при определённой скорости ветра. А значит, не последнюю роль играют климатические условия в вашем регионе. К примеру, максимальная мощность достигается при 10-12 метров в секунду. А в вашем регионе это значение в среднем 4-5, то заявленная электроэнергия вырабатываться не будет. Получится так, что просто переплатите и не получите ожидаемой мощности.
Мощность ветрогенератора напрямую зависит от диаметра того круга, который образуют лопасти. Приблизительно можно вычислить мощность по следующей формуле:
P = D^2 * R^3 / 7000, где
D – диаметр лопастей;
R – скорость ветра.
Если диаметр будет равен 1,5 метра, а скорость в вашей местности 5 метров в секунду, то мощность будет примерно 0,04 киловатта. Как видно мощность можно увеличить двумя способами: наращивая диаметр и скорость ветра. Причём последний параметр от нас не зависит
Обращайте внимание при покупке и на ёмкость аккумуляторов. Штиль может быть практически везде, кроме прибрежных зон. И в такие периоды ваши электроприборы будут брать электричество от аккумуляторов
Их ёмкость ограничена. Поэтому лучше дополнительно иметь резервное питание
И в такие периоды ваши электроприборы будут брать электричество от аккумуляторов. Их ёмкость ограничена. Поэтому лучше дополнительно иметь резервное питание.
Какое количество электроэнергии требуется обычной семье? В рядовой квартире у нас набегает за месяц примерно 360 кВтч. Ветрогенератор мощностью 5 киловатт выработает это количество даже при небольшой скорости ветра, какая обычно бывает в средней полосе России. А вот если энергопотребление велико (к примеру, стоит электрообогреватель, электрокотёл и т. п.), то ветрогенератора мощностью в 5 киловатт уже не хватит. Если только он не установлен у берега моря или крупного водоёма.
Калькулятор расчета прогнозируемой мощности ветрогенератора
Пояснения по проведению расчетов
Следует правильно понимать – никакой, даже самый совершенный и напичканный современной электроникой генератор не берет энергию ниоткуда, и не способен выдать больше того показателя, который определяется скоростью ветра и размерами ветряка. Иными словами, даже в идеальных условиях можно получить только ту энергию, которая переносится ветровым потоком через определенную площадь. Понятно, что площадью выступает в данном случае площадь круга, образованного вращением лопастей горизонтального ветряка.
Но весьма значительная часть этой энергии расходуется, так сказать, бесполезно – это создание завихрений воздуха, несоврешенсво крыльчатки, потери на силы трения в механике самого ветряка, системы передачи вращательного момента и в генераторе. Это банальный нагрев механизмов, потери в целях преобразования и передачи тока и многое другое. И считается очень неплохим показателем, если на выходе остается порядка 30÷40% от исходного энергетического потенциала. А на практике получается и того меньше.
Значит, задумывая создание ветровой энергетической установки, следует оценить, какое же от неё ожидается поступление электрической энергии. Оно зависит от скорости ветра (в кубической зависимости) и диаметра ветряка (в квадратичной).
Скорость ветра, понятное дело – величина непостоянная. Но для каждой местности рассчитаны среднегодовые показатели, на которые можно ориентироваться, если составляется прогноз на некоторую перспективу (месяц, год и т.п.). Эти показатели можно подсмотреть на карте схеме, размещённой ниже, но лучше все же уточнить в местной метеорологической службе.
Карта-схема среднегодовых скоростей ветра по регионам России
Итак, если есть намётки по размерам лопастей создаваемого генератора, можно провести и расчет мощности. Формула уже заложена в алгоритм калькулятора.
- Пользователю для начала предлагается указать скорость ветра. Некоторые пояснения на этот счет. Прогнозы выработки электроэнергии на определенный период проводятся именно по среднегодовой скорости. А вот номинальная мощность ВЭУ обычно вычисляется по так называемой расчётной скорости ветра, которая может быть в 1,5÷2 раза выше.
- Вторым пунктом указывается радиус ротора ветрогенератора, то есть расстояние от его оси до края лопасти.
(Интересно, что от количества лопастей ничего в данном случае не зависит. Точнее, даже несколько обратная картина – если лопастей больше трех, то может стать только хуже, так как теряется скорость вращения).
Если известны показатели КПД самого генератора и системы передачи вращения (редуктора), то они указываются в соответствующих полях. Если таких данных нет – можно оставить без изменения по умолчанию.
Остается нажать на кнопку расчета и получить результат. При вычислении от среднегодовой скорости ветра имеется возможность представить, какое количество энергии можно будет получить за определенный период.
К великому разочарованию многих, показатели могут быть более чем скромными. Так что есть над чем подумать, прежде чем принимать какое-то решение.
Расчет мощности ветрогенератора
Самостоятельное изготовление ветряка также нуждается в предварительном расчете. Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.
Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.
Формулы для расчёта
Для расчета ветрогенератора надо произвести следующие действия:
- определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
- полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
- зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач. От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
- расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока
Для примера рассмотрим расчет простого варианта. Формула выглядит следующим образом:
P=k·R·V³·S/2
Где P — мощность потока.
K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.
R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м3.
V — скорость ветра.
S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).
Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с
P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт
Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.
Что нужно учитывать
При расчете ветряка следует учитывать особенности конструкции ротора . Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.
Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.
Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.
Практические расчеты
Можно для понимания процессов округлить начальные величины, применив трехлопастной винт. Допустим V=10 м/с, площадь S=10м² (радиус винта 1,78 м), а плотность ρ принять 1,3кг/м3. Таким образом, N=1,3*10*1000/2=6500 (Вт). Умножаем на 30% (КИЭВ): 6500*30/100=1950 (Вт). При таком раскладе генерацию почти двух киловатт электроэнергии (без учета КПД электрогенератора) можно считать весьма обнадеживающей.
С учетом потерь на электрогенераторе, кабеле, заряде аккумулятора и инвертора можно стабильно рассчитывать на приблизительно 1 кВт электроэнергии на выходе домашней ветряной электростанции, если ветроэнергетическая установка имеет приведенные выше параметры.
Но, если взять скорость ветра преобладающую в большинстве регионов (4м/с) то полученный результат, с учетом КИЭВ будет: (1,3*10*4*4*4/2)*30/100=124,8 (Вт), и это без учета потерь на остальных компонентах домашней ветровой электростанции.
Такой мощности хватит лишь на стабильную беспрерывную работу ноутбука и зарядку мобильных телефонов. При снижении скорости ветра до 3м/с результат на выходе и вовсе будет мизерным: (1,3*10*3*3*3/2)*30/100=52,65 (Вт).
Если еще снизить скорость ветрового потока до двух метров в секунду, то выход мощности будет: (1,3*10*2*2*2/2)*30/100=15,6 (Вт). Но, практика показывает, что при скорости ветра 2м/с и ниже, трехлопастной винт даже не раскрутится. Поэтому при низких скоростях ветра используют тихоходные винты, увеличивая количество лопастей, или применяя роторы других конструкций (Дарье, Ленца, Савониуса), у которых меньше КИЭВ, но они более «восприимчивы» к слабым дуновениям воздуха.
Конструкции ветрогенераторов
Существует ошибочное мнение, что с увеличением у винта количества лопастей растет мощность ветрогенератора, но это в корне не так – ведь вращающиеся лопасти создают вихрь, и чем больше их в ветряке, тем большее количество энергии ветра будет расходоваться на закручивание воздуха вокруг оси винта.
В идеале самым эффективным является однолопастной винт, создающий меньше всего завихрений, при этом обладающий большой быстроходностью и требующий значительных скоростей ветра.
Поэтому типичный ветряной генератор имеет три лопасти, как наилучший компромисс между тихоходностью и потерей энергии на завихрения.В приведенных выше расчетах использовался гипотетический лопастной винт с размахом (диаметром) 1,78*2=3,56 м.
Это довольно громоздкая конструкция, очень сложная для самостоятельного изготовления и установки. Народные умельцы делают лопастные винты меньшего диаметра из подручных материалов, изготавливая лопасти для ветрогенератора своими руками, например из канализационной ПХВ трубы.
Геометрия лопасти имеет сходство с крылом самолета, но у ветряка угол атаки для максимальной эффективности ветрогенератора должен изменяться по мерее отдаления от оси вращения. Следует детально изучить специальную литературу, а также посоветоваться с умельцами на различных форумах, прежде чем пытаться проектировать и изготовлять лопастные винты.
Поэтому многие умельцы обращают внимание на другие конструкции, например, турбины с вертикальной осью, которые более тихоходные с меньшими требованиями к точности расчетов и требований безопасности. Изготовить такой роторный ветрогенератор своими руками можно в домашнем гараже из подручных материалов и большой бочки, как показано в видеоролике ниже:
Эксперименты показывают, что данный самодельный и несовершенный ротор Онипко имеет даже лучшие характеристики, чем заводской трехлопастной винт вентилятора такого же диаметра.
https://youtube.com/watch?v=F8X2p6NjKfk
https://youtube.com/watch?v=6eoCOh0E6Qc
Как вырезать лопасти
Далее по линии начиняя с корня лопасти отмечаете размеры радиуса лопасти – в столбце “Радиус лопасти” в зеленых колонках. По этим размерам на линии ставите точки в лево и в право от корня лопасти. Влево если смотреть от корня лопасти к кончику будут координаты лекала Тыл мм, а справа от линии координаты лекала Фронт мм. После соединяете точки и у вас образуется лопасть, которую обычно вырезают с помощью полотна от ножовки по металлу, или электролобзиком.
Отверстия для крепления лопасти на хаб делаются строго по центральной линии лопасти, которую чертили на трубе в самом начале, если сместить отверстия, то лопасть встанет под другим углом к ветру и потеряет все свои качества. Кромки лопасти нужно обязательно обработать, фронтальную часть лопасти закруглить, тыльную часть заострить’ и закруглить кончики лопастей чтобы ничего не свистело и не шумело. Таблица эксель уже учитывает при расчете обработку кромок таким образом как на картинке ниже.
>
Надеюсь вам стало понятнее как пользоваться табличкой и как подбирать винт под генератор. Для примера я конечно выбрал генератор с неподходящими параметрами так-как слишком рано начинается зарядка 12в АКБ, для 24в и 48 вольт результаты были бы другие и мощность еще выше, но все примеры не опишешь.
Самое главное понять принципы, например подбирая винт если он имеет хорошую мощность при одних оборотах, это не значит что он будет ее иметь на практике, если генератор слишком рано нагрузит винт, то он не выйдет на свои обороты и не разовьет ту мощность, которая должна быть при меньших оборотах, хоть и ветер будет расчетный или даже выше. Лопасти настроены на определенную быстроходность и будут брать максимум мощности от ветра при своей быстроходности.
Как сделать расчет ветрогенератора
Методика расчета мощности ветроколеса ветрогенератора относительно точная и довольно простая.{amp}lt;p{amp}gt;
Ниже формула расчета мощности энергии ветра P=0.6*S*V^3, где
P- мощность Ватт
V^3- Скорость ветра в кубе м/с
r- радиус окружности в квадрате
К примеру если взять площадь винта 3кв.м. и посчитать мощность на ветре 10 м/с, то получится 0,6*3*10*10*10=1800ватт. Но это мощность ветрового потока, а винт заберет часть мощности, которая в теории может достигать 57%, но на практике для горизонтальных трехлопастных ветрогенераторов этот параметр 35-45%. А для вертикальных типа Савониус 15-25%.
Обратите внимание
Тогда в среднем для горизонтального трехлопастного винта коэффициент использования энергии ветра поставим 40% и посчитаем, 1800*0,4= 720 ватт. Винт заберет 720 ватт у ветра, но еще есть КПД генератора, который у генераторов на постоянных магнитах примерно 0,8 , а с электровозбуждением 0,6. Тогда 720*0,8=576 ватт.
Но на практике все может быть гораздо хуже, так-как генератор не во всех режимах работы имеет высокий КПД, так-же eсть потери в проводах, на диодном мосту, в контроллере, и в аккумуляторе. Поэтому можно скинуть смело еще 20% мощности и останется примерно 576-20%=640,8 ватт.
Обратите внимание
У вертикального ветрогенератора это параметр будет еще меньше так-как во-первых КИЭВ всего 20%, а так-же мультипликатор, КПД которого 70-90%.
Тогда изначальные из 1800 ватт мощности ветра лопасти отнимут 1800*0,2=360ватт. Минус КПД генератора 0,8 и мультипликатора 0,8 равно 360*0,8*0,8=230,4ватт.
И еще минус 20% на потери в проводах, диодном мосту, контроллере и АКБ., и останется 230,4-20%=183,6ватт.
Эту формулу можно встретить на многих форумах и сайтах по ветрогенераторам. Для проверки формулы я хочу сравнить реальные данные двух ветрогенераторов небольшой мощности с почти одинаковыми по площади винтами, но один горизонтальный, а второй вертикальный.
КИЭВ первого так-как лопасти сделаны на глазок наверно 0,3 , а второго вертикального вроде хорошо сделанного 0,2.
Теперь вычислим площадь винта ометаемую ветром, для первого это 1,76м, для второго вертикального 1,8м.
значит для горизонтального 0,6*1,76*10*10*10=1056*0,3*0,8-20%=202ватт.
значит для вертикального 0,6*1,8*10*10*10=1080*0,2*0,8-20%=138ватт.
Получились вот такие теоретические данные, но зная реальные становится становится понятно что КИЭВ обоих ветрогенераторов и КПД их генераторов далек от хороших показателей.
Важно
В таком случае для большинства самодельных генераторов, которые делаются на глазок без расчетов можно смело скидывать еще 50% и получить в итоге реальную ожидаемую мощность от ветроустановки с ветроколесом определенной площади.
Горизонтальный ветрогенератор мощностью 202ватт.-50%=101ватт, а реальных 90ватт.
Вертикальный ветрогенератор мощностью 138ватт.-50%=69ватт,а реальных 60ватт.
Уже продолжительное время интересуясь ветрогенераторами я сделал ( может и ошибочный) вывод что большинство самодельных ветроустановок далеки от заводских аналогов. Только лишь с применением точных расчетов можно добиться высокого КПД всей ветроустановки и это удается не многим.
Расчет мощности ветроколесаКак расчитать диаметр и мощность ветрогенератора, в принципе все достаточно просто.Формула для расчета ветроколеса, а так-же реальные примеры расчетов мощности.{amp}lt;p{amp}gt;
Уточняем тип конструкции
Прежде, чем начать расчет, следует определиться с количеством фаз генератора. Однофазные устройства выдают неравномерное напряжение, имеющее скачки амплитуды.
Если ветряк планируется использовать для питания несложных и нетребовательных механизмов или освещения, то можно обойтись однофазным генератором, но для полного комплекса оборудования — аккумуляторные батареи, инвертор — понадобится трехфазное устройство. Иначе оборудование будет получать неравномерное напряжение, что скажется на его работе и состоянии весьма отрицательно.
Кроме того, однофазные генераторы имеют одинаковое количество катушек и магнитов, из-за чего при работе постоянно гудят. При набегании магнита катушка начинает активно сопротивляться, что вызывает заметную вибрацию, опасную для конструкции генератора и всего ветряка. Затем надо уточнить особенности конструкции.
Заодно надо решить, как будет создан генератор — путем модернизации готового устройства (например, автомобильного генератора), или создан дисковый генератор «с нуля». Преимуществом готовых устройств является наличие качественного корпуса, ротора и всех необходимых элементов. Но понадобится переточить ротор под магниты, для чего понадобится обращаться к токарю.
Кроме того, размер обмоток, способных поместиться в пазы корпуса, ограничен, поэтому каких-то глобальных изменений в конструкцию внести не удастся. Дисковые самодельные генераторы могут иметь любые размеры, что позволяет изготовить наиболее приспособленный для имеющихся замыслов образец.
Какие конструкции имеют наивысший КПД?
На сегодня наивысший КПД горизонтальных ветровых установок, обладающих большей эффективностью, чем вертикальные ветряки, равен 0,4. Для вертикальных устройств среднее значение считается равным 0,38, т.е. показатели близки и не находятся на большом удалении друг от друга. Периодически появляются сообщения о разработках устройств, КПД которых превышает существующие показатели в 2 или более раз, что весьма сомнительно и не подтверждается более ничем, кроме голословных утверждений журналистов, плохо представляющих себе предмет.
Тем не менее, устройства с заметно возросшей эффективностью существуют. Они созданы в разных конструкционных вариантах, есть горизонтальные или вертикальные установки с повышенной производительностью, мощностью, остальными параметрами. Большинство таких устройств являются маломощными комплексами, предназначенными для использования в отдаленных районах и обеспечивающие отдельные дома или участки.
Известны конструкции изобретателей Онипко, Третьякова и многих других конструкторов, имеющие оригинальные и элегантные варианты увеличения производительности и, соответственно, КПД. Большинство из них пока еще находятся в стадии разработки или подготовки к массовому производству, так как активная работа в этом направлении начата относительно недавно, еще не успела полностью реализоваться в виде промышленных изделий.
Ветрогенератор для дома уже не редкость
Ветровые электростанции давно используют в промышленных масштабах. Но, сложность конструкции, а также сложность ее монтажа, не давали возможность использовать это оборудование в частных домах, как например солнечные панели.
Однако сейчас, с развитием технологий и увеличением спроса на “зеленую энергию”, ситуация изменилась. Производители наладили выпуск малогабаритных установок для частного сектора.
Принцип работы
Ветер вращает лопасти ротора, насаженного на вал генератора. В результате вращение в обмотках вырабатывается переменный ток. Для увеличение количества оборотов, а соответственно и количества выработанной энергии может использоваться редукторная передача (трансмиссия). Она же может блокировать вращение лопастей полностью, если возникнет такая необходимость.
Полученный переменный ток преобразуется в постоянный 220 Вт с помощью инвертора. Далее он поступает потребителю или, через контроллер заряда, на аккумуляторные батареи для накопления.
Полная схема работы установки от генерации энергии до ее потребления.
Виды ветрогенераторов и какой лучше для частного дома
На данный момент существуют два типа данной конструкции:
- С горизонтальным ротором.
- С вертикальным ротором.
Первый тип, с горизонтальным ротором. Такой механизм считается самым эффективным. КПД составляет примерно 50%. К минусом относиться необходимость минимальной скорости ветра от 3 м.в секунду, конструкция создает много шума.
Для максимально эффективной работы необходима высокая мачта, что, в свою очередь, усложняет монтаж и дальнейшее обслуживание.
Второй тип, с вертикальным. Ветрогенератор с вертикальным ротором имеет КПД не более 20%, при этом достаточно скорости ветра всего 1-2 м в секунду. При этом он работает значительно тише, уровень выделяемого шума не более до 30 дБ, и без вибрации. Не требует большого пространства для работы, при этом не теряя эффективность.
Для установки не требуется высокая мачта. Оборудование можно смонтировать на крыше дома даже своими руками.
Отсутствие анемометра и поворотного механизма, он совсем не нужен при такой конструкции, делает этот тип ветрогенератора более дешевым по сравнению с первым вариантом.
Видео обзор
Какую установку выбрать?
Прежде чем ответить на этот вопрос нужно понять ваши требование, финансовые возможности и приоритеты в эксплуатации.
Если вы хотите получать максимум электроэнергии и готовы тратиться на периодическое обслуживание генератора, выберите первый вариант. Вложив единоразово в высокую мачту, и оплатив 1 раз в 5-10 лет замену подшипников или масла, вы получите полную энергонезависимость, и даже, если вы живете в Украине или странах ЕС, сможете продавать излишки электричества.
Высокий уровень шума этой станции требует выбрать максимально удаленное от жилых зданий место. Это момент также нужно учитывать, потому что инфразвук не останется незамеченным вашими соседями.
Чтобы получить эквивалентную выработку в отношении с первым вариантом, необходимо будет поставить 3 ветрогенератора этого типа. Однако, в ценовом эквиваленте получается примерно одинаковая сумма (при условии самостоятельного монтажа).
Видео обзор эксперта в области альтернативных источников энергии
Расчет ветрогенератора
Для того чтобы правильно рассчитать номинальную мощность ветряного генератора, необходимо соблюдать определенные правила.
Перед выбором ветрогенератора необходимо определить скорость и направление ветра, наиболее характерные в месте предполагаемого монтажа. Следует помнить, что вращение лопастей начинается при минимальной скорости ветра 2 м/с. Максимального КПД удается достичь, когда этот показатель достигает значения от 9 до 12 м/с. То есть, для того чтобы обеспечить электричеством небольшой загородный дом, потребуется генератор с минимальной мощностью 1 кВт/ч и ветер со скоростью не менее 8 м/с.
Скорость ветра и диаметр винта оказывают непосредственное влияние на мощность, вырабатываемую ветряной электроустановкой. Точно рассчитать эксплуатационные характеристики той или иной модели возможно с помощью следующих формул:
- Расчеты в соответствии с площадью вращения выполняются следующим образом: P = 0,6 х S х V3, где S – площадь, перпендикулярная направлению ветра (м2), V – скорость ветра (м/с), Р – мощность генераторной установки (кВт).
- Для расчетов электроустановки по диаметру винта применяется формула: Р = D2 х V3/7000, в которой D является диаметром винта (м), V – скорость ветра (м/с), Р – мощность генератора (кВт).
- При более сложных вычислениях учитывается плотность воздушного потока. Для этих целей существует формула: P = ξ х π х R2 х 0,5 х V3 х ρ х ηред х ηген, где ξ является коэффициентом использования ветровой энергии (безмерная величина), π = 3,14, R – радиус ротора (м), V – скорость воздушного потока (м/с), ρ – плотность воздуха (кг/м3), ηред – КПД редуктора (%), ηген – КПД генератора (%).
Таким образом, электроэнергия, производимая ветрогенератором, возрастает количественно в кубическом соотношении с повышающейся скоростью ветрового потока. Например, при повышении скорости ветра в 2 раза, выработка ротором кинетической энергии возрастет в 8 раз.
При выборе места установки ветрогенератора необходимо отдавать предпочтение участкам без больших построек и высоких деревьев, которые создают преграду для ветра. Минимальное расстояние от жилых домов составляет от 25 до 30 метров, в противном случае шум во время работы будет создавать неудобства и дискомфорт. Ротор ветряка должен быть расположен на высоте, превышающей ближайшие постройки не менее чем на 3-5 м.
Если подключение загородного дома к общей сети не планируется, в этом случае можно воспользоваться вариантами комбинированных систем. Работа ветряной установки будет значительно эффективнее при использовании ее совместно с дизель-генератором или солнечной батареей.
Пример расчета лопастей из 160-й трубы для данного генератора
быстроходность
Самый лучший результат я получил из 160-й трубы при диаметре 2,2м и быстроходности Z3,4 — лопастей 6шт, но такой диаметр винта из трубы 160мм лучше не делать, слишком тонкие и хлипкие лопасти получатся. При 3м/с номинальные обороты винта составили 84об/м и мощность винта 25ватт, то-есть примерно подходит. Надо конечно с запасом на КПД генератора, но 160-я труба и так тонкая и скорее всего уже при 7м/с будет наблюдаться флаттер. Но для примера пойдет
Теперь если изменять скорость ветра в таблице, то видно что мощность винта и его обороты будут примерно совпадать с параметрами винта, что нам и требуется, так-как важно чтобы винт был не перегружен и не недогружен — иначе пойдет вразнос на большом ветре. >. Так при разном ветре я получил такие данные винта
Ниже на скриншоте данные винта при 3м/с, максимальная мощность винта (КИЭВ) при быстроходности Z3,4 Обороты и мощность при этом примерно совпадают с мощностью генератора при этих оборотах
Так при разном ветре я получил такие данные винта. Ниже на скриншоте данные винта при 3м/с, максимальная мощность винта (КИЭВ) при быстроходности Z3,4 Обороты и мощность при этом примерно совпадают с мощностью генератора при этих оборотах
Обороты генератора 100об/м- 2 Ампер 30 ватт >
Далее вводим скорость 5м/с, это как видно на скриншоте 141об/м винта и мощность на валу винта 124 ватта, тоже примерно совпадает с генератором. Обороты генератора 150об/м — 8 Ампер 120 ватт
При 7м/с винт начинает по мощности обходить генератор и естественно недогруженный набирает большие обороты, по этому быстроходность я поднял до Z4 , получилось тоже примерное совпадение по мощности и оборотам с генератором. Обороты генератора 200об/м -14 Ампер 270 ватт
При 10м/с винт стал гораздо мощнее генератора при номинальной быстроходности так-как мало-оборотистый и не может раскрутить генератор быстрее. Так при Z4 мощность винта 991ватт, а обороты всего 332об/м. Обороты генератора 300об/м — 26 Ампер 450 ватт. Но недогруженный генератор позволяет раскрутится винту до быстроходности Z5 и выше, при этом КИЭВ винта падает, а следовательно и мощность, но при этом возрастают обороты, по этому получилось так что винт раскрутит генератор немного больше, но сам при этом потеряет в мощности и где то наступит баланс. Данные при этом примерно совпадут с генератором, но винт явно по мощности обгоняет генератор, по-этому при этом ветре пора делать защиту уводом винта из под ветра.
Так мы подогнали винт из ПВХ трубы диаметром 160мм под генератор. Сразу скажу что именно шести-лопастной винт такой быстроходности оказался самым подходящим. А так можно считать винт любого диаметра и количества лопастей. Просто трех-лопастной винт диаметром 2,3м для этого генератора оказался слишком скоростным и он не набрал бы обороты для своего максимального КИЭВ, так-как генератор сразу бы его начал тормозить.
По этому увеличением количества лопастей я понизил обороты винта и сохранил его мощность. Так винт получился подходящим под генератор, но 160-я труба внесла свои ограничения, в частности и так диаметр слишком большой и на ветру от 7м/с винт с хлипкими и тонкими лопастями скорее всего получит флаттер, и будет рокотать как взлетающий вертолет. Да и этим винтом мы снимаем с генератора грубо говоря при ветре 10м/с всего ватт 600-700, а можно в два раза больше, если поднять быстроходность винта и немного увеличить его диаметр.
Ниже скриншот с вкладки «Геометрия лопасти». Это размеры для вырезания лопасти из трубы