Как подключить светодиодную ленту к компьютеру: процесс подключения к блоку питания

Этапы подключения

Стадии монтажа и пусконаладки диодной ленты включают в себя следующее: нарезка ленты нужной длины, присоединение коннекторов (если они есть в комплекте), электрическая сборка всей схемы и проверка на герметичность перед включением. Неправильное выполнение работ на любой стадии грозит выходом ленты из строя, ударом тока рядом находящихся людей или случайным возгоранием.

Нарезка ленты нужной длины

Лента на 220 вольт обладает важным отличием: длина кластера из-за большего количества – не единицы, а десятки светодиодов – вынуждает потребителя обрезать значительные участки. При подключении ленты непосредственно в розетку производители оставляют от 60 светодиодов на фрагмент. Если светодиоды двойные (последовательные, а не параллельные пары), количество светодиодов может быть снижено до 30. А это значит, что на каждый из них отводится по 7,5-8 вольт (правильно – не более 6,6). Такое парно-последовательное соединение преобладает в готовых цокольных лампочках, в которых драйвер выдаёт от 40 до 80 вольт постоянного тока (6-12 двойных последовательно-парных светодиодов).

Каждый производитель следует собственной тактике, но вывод остаётся неизменным – светодиоды соединяются последовательно. Параллельно включённые последовательные группы здесь отсутствуют, так как в качестве исходного берётся выпрямленное (постоянное) напряжение 220 вольт, получаемое из переменного, на котором и работает бытовая осветительная сеть. С этой целью лента обладает специальными пометками, на которых слой герметика уменьшен, чтобы потребителю было удобно разрезать ленту и зачистить от изолятора выводы для пайки.

Установка и закрепление коннектора

Для удобства светосборки оснащаются коннекторами. Это позволяет, не нарушая пайку и не перекусывая провода, быстро перенести подвес с лентой, кабель с сетевой вилкой в другое место. Для лент, устанавливающихся на значительно долгий период, можно воспользоваться и «глухой» пайкой – лента не переместится на новое место, а значит, нет смысла вставлять коннекторы. Паяные (несъёмные) соединения по всей длине проводки и светосборки считаются самыми надёжными – в отличие от ослабленных клемм они не искрят, так как присоединены наиболее основательно и не являются вынимающимися при выключении. Коннекторы припаиваются к проводам или обжимаются при помощи специального инструмента вроде того, что применяют для зачистки и обжима витых пар в компьютерных и серверных сетях, работающих по протоколам и стандартам локальных вычислительных систем.

Подключение проводов к выпрямителю

Провода, идущие от светодиодной сборки к розетке, должны подключаться к выпрямителю. Если проигнорировать выпрямитель, то свет от такой светоленты станет мерцающим. Провода от светоленты подсоединяются к «плюсу» и «минусу» диодно-выпрямительного моста. В состав последнего входят 4 высоковольтных диода, рассчитанных на мощность от десятков до сотен ватт. Согласно схеме даже литой мост (сборка выпрямителя в цельном, водонепроницаемом корпусе) предполагает подключение встречно включённых диодных катодов и анодов к светодиодной ленте (две точки на схематичном эскизе), а включение выводов диодов «вразнобой» (катод одного к аноду другого) – присоединение к источнику переменного напряжения. Можно использовать и однополупериодный выпрямитель (один диод), но тогда пульсации будут происходить с частотой 50, а не 100 Гц, так как отрицательная полуволна (полупериод переменного тока) отрезается. Двухполупериодный (два диода) выпрямитель также приведёт к ненужной потере мощности, поэтому лучшим вариантом считается именно диодный мост (4 выпрямительных диода). Для сглаживания пульсаций служит параллельно подключённый к «плюсу» и «минусу» выпрямителя конденсатор.

Проверка герметичности

Промышленные ленты помещаются в силиконовую или полиэтиленовую оболочку, в толще которой и находится сама лента. Она имеет вид сплюснутой трубки. На ней не должно быть никаких проколов, повреждений. Дело в том, что, когда постоянное напряжение попадёт, например, в бассейн из-за повреждения защитной оболочки ленты в процессе её работы, то это может привести к гибели людей, пришедших поплавать. Несмотря на то что вода в целом не проводит ток, принудительно её не дистиллируют, а значит, в ней имеются примеси, и соприкосновение контактов с водой под напряжением опасно для жизни людей в бассейне. Многие владельцы бассейнов и аквапарков используют водонепроницаемые светоленты класса IP-68 для подсветки воды – это создаёт красивый и презентабельный вид, но такая инициатива нуждается в тщательной перепроверке светотехники перед погружением последней под толщу воды.

Способы подключения светодиодной ленты к источнику питания

Светодиодная лента обычно поставляется намотанной на катушки отрезками длиной пять метров с припаянными на внешнем конце короткими проводами, как на фотографии.

Для защиты места пайки контактных площадок светодиодной ленты от внешних воздействий и из эстетических соображений их обычно сверху закрывают отрезком термоусаживающейся трубкой.

Подключение питания с помощью LED коннектора

При подготовке светодиодной ленты к установке, отрезок ленты длиной пять метров приходится разрезать на более короткие отрезки, исходя из размеров поверхностей или предметов, на которые лента будет устанавливаться. Поэтому возникает необходимость самостоятельного присоединения проводников к контактным площадкам.

Самым простым и быстрым способом присоединения проводов к контактным площадкам светодиодной ленты для ее питания является механический способ, с помощью специального LED коннектора, один из разновидностей которых Вы видите на фотографии. Достаточно приложить ленту контактными площадками к контактам коннектора и защелкнуть крышку. Но этот способ очень дорогой, так как цена одного коннектора сравнима со стоимостью полметра самой ленты и менее надежный, чем подключение с помощью пайки припоем. Не каждый домашний мастер захочет нести такие расходы, особенно если система освещения состоит не из одного отрезка светодиодной ленты, а множества.

Подключение питания способом пайки припоем

При самостоятельной подготовке к монтажу светодиодной системы освещения или подсветки дешевле и надежнее выполнить подключение проводов к светодиодной ленте методом пайки. При кажущейся на первый взгляд сложности, припайка проводов к контактам светодиодной ленты не сложней, чем любая другая пайка. Главное соблюдать технологию и паять паяльником с нагретым до требуемой температуры узким концом жала шириной около 2 мм. Искусству пайки паяльником на сайте посвящен ряд статей.

Отрезанный конец светодиодной ленты обычно приобретает вид, какой Вы видите на фотографии. Количество контактных площадок зависит от вида ленты. Например, RGB лента на фото имеет четыре контактных площадки и к каждой из них необходимо припаять отдельный проводник.

Для получения качественной пайки в обязательном порядке нужно подготовить спаиваемые поверхности, покрыв их слоем припоя. Посмотрев видеоролик, Вы убедитесь, что лудить контактные площадки светодиодной ленты не сложная работа.

Всего просмотров:
109994

Контактные площадки светодиодной ленты не являются исключением и прежде, чем припаять к ним провода, их тоже необходимо залудить, как показано на фотографии.

Далее необходимо залудить концы проводов. Для этого необходимо предварительно нарезать их на куски нужной длины и снять с концов изоляцию. Цвет изоляции проводов значения не имеет, просто, когда используют провода с разным цветом изоляции, то не нужно будет в дальнейшем заниматься их прозвонкой мультиметром. Снять изоляцию на пару миллиметров и залудить провода сложно. Поэтому изоляция снимается на 8-10 мм,а после залуживания концов проводов, они подрезаются бокорезами до длины трех миллиметров.

Теперь осталось приложить залуженные концы проводов к контактным площадкам и по очереди касанием каждой площадки жалом паяльника с каплей припоя в течение пару секунд получить пайку, как на фотографии. После пайки нужно внимательно осмотреть, не соприкоснулись ли капли припоя соседних площадок. Для уверенности в отсутствии короткого замыкания между соседними площадками желательно воспользоваться мультиметром.

Напряжение на контактах светодиодной ленты не превышает 24 В, поэтому место пайки можно не изолировать. Но, все же, лучше обернуть его пару витками изоляционной ленты или надеть термоусадочную трубку с последующим прогревом строительным феном.

Схема подключения

USB разъём – это, пожалуй, основная деталь собираемой конструкции. Его можно купить в разборном корпусе или использовать ненужный, но рабочий шнур от любого периферийного устройства. В зависимости от удалённости системного блока от места монтажа подсветки, нужно посчитать длину провода. В некоторых моделях клавиатур сбоку имеется дополнительный USB разъём, который можно использовать для организации подсветки.

Светодиода

Схема подключения одного светодиода показана на рисунке. Для её реализации понадобится ответная часть разъёма USB, резистор, двухжильный провод и светодиод с высокой яркостью свечения. Если USB-штекер куплен отдельно, то его необходимо разобрать, освободив внутреннюю часть с контактами под пайку. Определившись со светодиодом, рассчитывают сопротивление резистора:

UПИТ – напряжение питания от USB порта, равное 5В; ULED – прямое напряжение светодиода, которое зависит от цвета свечения; ILED – номинальный рабочий ток светодиода.

Более подробно о том, как правильно выбрать и рассчитать токоограничивающий резистор, можно прочитать здесь.

Теперь осталось правильно спаять все имеющиеся детали между собой и придать подсветке привлекательный вид. Сначала с помощью кусачек укорачивают плюсовой вывод светодиода и припаивают к нему резистор. Далее один провод припаивают к свободному выводу резистора, а второй провод – к минусовому выводу светодиода. Выводы, резистор и места пайки скрывают под термоусадочной трубкой. Для придания приличного внешнего вида на оба провода вблизи светодиода надевают термотрубку большего диаметра. С обратной стороны соединительный шнур припаивают к клеммам разобранного USB разъёма. Провод, идущий от резистора, соединяют с клеммой №1 (+5В), а провод, идущий от минуса светодиода, — с клеммой №4 (GND). Проверяют, чтобы после пайки не было замыкания со второй и третьей клеммой и собирают разъём.

Если используется готовый USB шнур с разъёмом, то свободные концы проводов зачищают и с помощью мультиметра вызванивают два крайних питающих проводка. Затем их припаивают к светодиоду через резистор по вышеуказанной методике. Незадействованные информационные проводки укорачивают и изолируют, чтобы избежать короткого замыкания. Теперь подсветка готова к работе.

Светодиодной ленты

Чтобы подсветка обладала более высокой светоотдачей, используют светодиодную ленту. Особенно это актуально для освещения выдвижной полки компьютерного стола. Светодиодный отрезок наклеивают с краю под столешницей, обеспечивая равномерный световой поток на поверхности клавиатуры. Чтобы ленту запитать от USB порта, дополнительно потребуется повышающий преобразователь с 5 до 12 вольт, который придётся сделать своими руками либо приобрести в магазине электроники.

Но проще пойти другим путём. Компьютерный блок питания выдаёт необходимое +12В, которое присутствует на 4-х проводном molex разъёме внутри системного блока. Всё что требуется – это купить ответную часть molex разъёма со штырьками, припаять к нему и к светодиодной ленте провод питания нужной длины, который вывести через заднюю стенку системного блока. Плюс ленты соединяют с жёлтым проводом molex, а минус – с любым чёрным.

Нагрузочная способность шины +12В компьютерного блока питания в десятки раз больше, чем у USB, что даёт возможность сделать подсветку клавиатуры желаемой яркости.

Известный способ освещения помещений – светодиодная подсветка с помощью светодиодной ленты. Она имеет ряд преимуществ перед другими источниками света. Экономичность, легкость крепления – это делает ее удобной для эксплуатации в каких угодно помещениях и определенных зонах, будь то корпус системного блока, тыльная часть монитора или подсветка для компьютера. Как подключить светодиодную ленту к компьютеру различными способами?

Как подключить светодиодную ленту к 220 без блока питания

Светодиодные полосы освещения, изготовленные в заводских условиях, рассчитаны на совместную эксплуатацию с блоком питания. Данное устройство преобразует переменный ток домашней сети в постоянный. При этом, напряжение понижается с 220 до 12 вольт. Однако, в определенных условиях, возможно подключение таких приборов освещения непосредственно в сеть, напряжением 220 вольт.

Для правильного выполнения такого подключения 12-тивольтовую полосу, длиной 5 метров, нужно разрезать на 20 частей. В дальнейшем, переменный ток 220 вольт выпрямляется с помощью диодного моста, включенного в общую схему. Далее все части ленты последовательно соединяются между собой разноименными полюсами. То есть плюс соединяется с минусом и, наоборот. В некоторых случаях может появиться мерцание, частота которого составляет 25 Гц. Оно убирается с помощью конденсатора на 5-10 мф, на 300 В, смонтированного в общую систему.

Подключение светодиодной ленты

Большая часть светодиодных лент работает от напряжения 12 В или 24 в. Если линейка кристаллов одна, питание требуется 12 В, если их две — 24 в. Подходит любой источник постоянного тока, выдающий такое напряжение: аккумулятор, блок питания, батарея и т.д.

Схема подключения светодиодной ленты к сети 220 В через блок питания

Чтобы подключить ленту к бытовой сети 220 В требуется преобразователь или адаптер (еще называют блоками или источниками питания, адаптерами).

Недавно появились ленты, которые сразу можно подключать к сети в 220 В. Все они запаяны в пластиковые трубки — 220 Вольт это уже не шутки. Режутся тоже по намеченным линиям, соединяются при помощи специального коннектора, который вставляется в проводники. К коннектору подключается шнур со встроенным выпрямителем (это диодный мост и конденсатор).

Подключение специальной светодиодной ленты к сети 220В

Отличается эта лента от обычной тем, что в ней небольшие участки (20 шт) со светодиодами подключены не последовательно, а параллельно, еще и так, что диоды направлены навстречу друг другу. За счет этого получаем требуемое напряжение в 220 Вольт или около того. Переменный ток преобразуется в постоянный при помощи диодного моста, а пульсация гасится конденсатором.

Схема подключения светодиодной ленты без блока питания

В принципе, такую ленту можно собрать из обычной, но нужно будет позаботиться об изоляции: прикосновение к элементу, подключенному к бытовой сети без переходника чревато серьезными последствиями.

Как подключить несколько светодиодных лент

Каждая из лент, в зависимости от используемых модулей и количества элементов на одном метре, потребляет различное количество тока. Средние параметры приведены в таблице. Зная, какой длины вы хотите смонтировать подсветку, можно выбрать адаптер, который будет выдать требуемый ток.

Таблица потребляемого тока светодиодными лентами, питающимися от 12 В

Иногда требуемая длина ленты превышает 5 метров — когда необходимо подсветить комнату по периметру. Даже если блок питания может выдать требуемый ток, соединять последовательно две или больше пятиметровые ленты нельзя. Максимально допустимая длина одной ветки — вот те 5 метров, которые приходят в бобине. Если дорастить ее, подключив вторую последовательно, по дорожкам первой ленты будет проходить ток, многократно превышающий расчетный. Это приведет к быстрому выходу элементов из строя. Может даже расплавится дорожка.

Если мощность блока питания такова, что к нему можно подключить несколько лент, к каждой из них тянут отдельные проводники: схема подключения параллельная.

Как подключить несколько светодиодных лент к одному блоку питания

В таком случае удобно блок питания располагать посредине, например, в углу, а от него — две ленты по обе стороны. Но часто дешевле купить несколько менее адаптеров, чем один более мощный.

Подключение RGB ленты через контроллер

Последовательно подключаются сначала блок питания, потом контролер. Между собой они подключаются двумя проводами. Из контроллера выходят уже 4 проводника, которые разводятся по соответствующим контактным площадкам ленты RGB.

Подключение светодиодной ленты RGB через контроллер

Точно также, как и в монохромных лентах, и в этом случае максимально допустимая длина одной линии — 5 метров. Если необходимо большая длина, то от контроллера отходят два пучка проводов по 4 штуки в каждом, то есть соединяются они параллельно. Длинна проводников может быть разной, но более рационально, чтобы блок питания и контроллер находился посередине, а в стороны уходят две ветки подсветки.

Ошибки, допускаемые домашними мастерами при подключении светодиодной ленты

Выход светодиодной ленты из строя по прошествии минимального времени эксплуатации – это не всегда заводской брак производителя. Чаще всего в коротком сроке службы полосы виноваты сами мастера, приобретающие и подключающие оборудование. Имеет смысл рассмотреть 4 основных ошибки, допускаемые начинающими домашними умельцами, которые приводят к перегоранию светодиодов, дорожек ленты и иного оборудования.

Наиболее частая ошибка – неверный выбор класса защищённости

Класс защищённости от пыли и влаги обозначается буквами IP, после которых следуют две цифры. Первая – защищённость от попадания пыли, вторая – влаги. Если установить в ванной комнате светодиодную ленту с классом IP20, то возникает опасность не только её быстрого выхода из строя, но и поражения человека электрическим током. А подобная «неприятность» чревата не только подрывом здоровья, но и летальным исходом. Что же касается классификации устройств по IP, то подробнее о ней можно узнать из картинки ниже.

ФОТО: eltesla.ruТаблица расшифровки класса защищённости светодиодных лент и иного оборудования

Ещё одно упущение – неправильный подбор блока питания по мощности

Тоже довольно распространённая ошибка. Обычно домашние мастера изначально не до конца планируют будущую подсветку. Уже после монтажа блок питания нагружается дополнительными светодиодными полосами, в результате, его выходная мощность оказывается ниже, чем потребляемая лентой. Результат предсказуем – блок питания перегревается и сгорает. Поэтому стоит следить, чтобы выходная мощность блока была всегда на 30% (это минимум) выше, чем потребляемая светодиодной лентой.

ФОТО: alfa-moduli.ruДовольно мощный блок питания на 250 Вт

Третья ошибка – подключение дополнительных лент

Об этом уже упоминалось в статье. Дополнительные ленты должны подключаться исключительно параллельно. Последовательное подключение приведёт к перегреву дорожек ближайшей к блоку ленты и её выходу из строя.

ФОТО: 5plus.dp.uaПолос по 5 м может быть сколько угодно, главное, чтобы оборудование выдерживало

Ещё одно правило, которое часто не берётся в расчёт

Многие мастера считают, что не имеет значения, куда наклеена светодиодная лента, однако это не так. Специалисты рекомендуют использовать в качестве основы алюминиевые профили, которые играют роль радиаторов охлаждения. На такой основе светодиодная лента проработает значительно дольше.

Особенности подключения RGB ленты

Порой трудно заранее подобрать необходимую колоратуру подсветки, намного удобней отрегулировать цвет уже после монтажа. Для таких целей используется многоцветная светодиодная лента (RGB). Подключение разноцветной немного сложнее обычной. Кроме силового блока, еще понадобится RGB-контроллер для цветовой регулировки и яркости свечения.

Наиболее распространенные многоцветные ленты SMD 3528 и SMD 5050. Разница между ними в параметрах и габаритных размерах кристаллов, SMD 5050 более мощная и ярче светит. Принцип подключения этих типов совершенно идентичен.

RGB лента имеет четыре контакта, так как на минимально разрезаемом участке ленты расположены три разных по цвету светодиода, а каждый цвет имеет свой канал. Регулируя контроллером мощность на каждом канале, добиваются необходимой цветовой гаммы.

Для обеспечения нормальной работы многоцветной ленты, адаптер и RGB-контроллер следует выбирать с запасом мощности около 30%. К примеру, 1 м изделия на светодиодах SMD 5050 будет потреблять около 72 Вт электроэнергии. Для корректной работы целесообразно использовать блок на 100 Вт.

Подключение производится в соответствии с маркировкой на ленте и RGB-контроллере.

  • Желтый провод (+V) – общий;
  • R – красный;
  • G – зеленый;
  • B – голубой.

Для подключения подсветки, общая длина которой свыше 5 м, стоит воспользоваться схемой параллельного подключения.

Наибольшая мощность производимых контроллеров обычно не превышает 200 Вт, что поддерживает не более 10 м LED изделия. Для подключения большей длины применяется усилитель. Для питания усилителя используется силовой блок, который устанавливается отдельно. Можно рассчитать нагрузку для подключения и от одного адаптера, который питает ленту, но как показывает практика, лучше использовать отдельный блок.

Что из себя представляет

Есть обычные, одноцветные варианты, или многоцветные RGB ленты, для нормальной работы которых потребуется управляющее устройство — контроллер. Все они выпускаются в готовом к использованию виде, с присоединенным разъемом. Остается только включить штекер в гнездо и разместить ленту в запланированное место.

При желании, для работы от 5 В может быть переделана обычная светодиодная лента на 12 В.  Однако, этот процесс требует некоторой подготовки как в теоретическом, так и в практическом плане. Некоторые пользователи предлагают собрать преобразователь 5 В на 12 В, но при таком решении допустимый ток с изначального значения 500 мА падает до 250 мА. Кроме того, теряется сам смысл присоединения ленты к USB — тогда можно просто взять штатный БП 12 В и подсоединить его к сети.

Гораздо проще использовать готовые светильники на базе светодиодов SMD 2835, содержащие 60 элементов/метр длины. Есть одно- и многоцветные варианты, с разной степенью защиты. Их можно приобрести и самостоятельно подключить к гнезду USB, выполнив некоторые технические процедуры. Преимуществом такого варианта будет более точная подгонка длины ленты к размерам несущей поверхности, выбор наиболее подходящего цветового оттенка.

https://youtube.com/watch?v=oAegvyHOySk

Подключение светодиодной RGB ленты

Правильный порядок подключения элементов цепи выглядит следующим образом:

Правильный порядок подключения

Запомните. Участки ленты, длиной больше 5 метров, должны подключаться только параллельно.

Что будет, если подключить последовательно?

Во-первых, вы заметно потеряете в яркости на конце участка. Хотя светодиоды и имеют очень малое сопротивление, но потери есть. При такой протяженности на конце напряжение будет порядка 10В. Пониженное напряжение даст пониженную яркость, уже заметную для глаза.

Неправильное подключениеПравильное подключение

Во-вторых, токопроводящие дорожки ленты рассчитаны на максимальную длину 5м. Подключив последовательно еще 5, дорожки будут перегреваться и освещение скорее всего перегорит в самом начале участка.

RGB коннектор

Соединять ленту между собой можно с помощью пайки или клеммами. Для одноцветных вариантов продаются двухвыводные клеммы (коннекторы), для RGB – четырёх или пяти. Уточняйте этот момент при покупке.

Подробнее как соединять rgb ленту между собой.

Блок питания подключается в сеть 220В (клеммы AC, полярность не важна), преобразует переменное напряжение в постоянное 12В (клеммы V+, V-)

При подключении следующих элементов цепи важно соблюдать полярность

Клеммы подключения на БП

RGB контроллер подключается после блока питания (с соблюдением полярности), а в него подключается ргб лента. Каждый вывод на корпусе предназначен для конкретного вывода светодиодов. Если перепутаете местами, ничего страшного не произойдет, просто цвета будут перепутаны.

Клеммы подключения контроллера к светодиодам

В результате готовая схема в сборе должна иметь вид:

Схема в сборе

Усилитель внешне похож на контроллер, отдельно подключается к БП, только имеет не одну плашку с клеммами, а две. Маркируется чаще всего как Led Amplifier, устанавливается в разрыв ленты. Подключается по схеме:

Порядок подключения RGB усилителя в цепьНазначение клемм led amplifier

Разберем теперь схемы подключения лент разной длины с усилителем и без, с одним или несколькими блоками питания.

Схема подключения RGB светодиодной ленты без усилителя

Это простейшая схема включения rgb светодиодной ленты длиной до 5 метров через контроллер с пультом.

Электрическая схема подключения RGB освещения

Для подключения светодиодной RGB ленты длиной 10 или 15 метров, убедитесь, что хватает мощности контроллера и БП (с запасом), и подключайте по следующей схеме:

Схема подключения 10 или 15 

Схема подключения ленты с RGB усилителем

Усилитель используем, если не хватает мощности контроллера. Если мощность блока питания позволяет подключить контроллер и усилитель, используем следующую схему:

Когда суммарная мощность контроллера и усилителя выше мощности БП или блок такой мощности использовать нерационально (большой, сильно греется или шумит), тогда подключаем led amplifier к отдельному питанию по схеме:

Схема подключения усилителя с 2 блоками питания

По такой схеме наращивать суммарную длину ленты можно сколько угодно. Вся она будет управляться с одного пульта.

Помимо последовательного подключения, как в примерах выше, усилители можно подключать параллельно.

Схема параллельного подключения нескольких RGB усилителей с одним блоком питания.

Схема: один БП несколько усилителей

Схема с несколькими параллельными усилителями с отдельным питанием.

Схема: несколько параллельных усилителей с отдельными БП

Если клемм нет – используйте паяльник и монтажный провод, НО не перегревайте контактные площадки. Подробнее как соединять ленту.

Правильная схема подключения 20 метров RGB ленты показана на видео.

Способы монтажа LED-ленты

К этому классу относятся светильники с напряжением питания 12,24 или 36 В. Такие приборы рекомендуется применять в жилых или служебных помещениях (на улице можно применять устройства и на 220 В). Выбор способа монтажа осветительного прибора производится исходя из его погонной или удельной мощности. Так называется мощность потребления 1 метром полотна.

Маломощные LED-светильники

К этой категории можно отнести устройства с погонным потреблением до 10 Вт. Их можно монтировать непосредственно на подстилающую поверхность. Для крепления производители предусмотрели штатный клеевой слой. Надо всего лишь снять защитную оболочку и наклеить подложку в нужное место. Естественного движения воздуха вполне хватит для охлаждения светильника.


LED-лента с липким слоем

Успех мероприятия во многом зависит от подготовки поверхности:

  • место приклеивания полотна должно быть ровным;
  • его надо очистить от пыли, загрязнений;
  • непосредственно перед наклейкой надо обезжирить подготовленную поверхность по всей длине (если это не бумажные обои).

Если с первого раза приклеить полотно не удалось, второй раз воспользоваться штатным клеевым слоем не получится. Придется использовать двусторонний скотч, который надо наклеить вдоль трассы прокладки полотна, а затем приложить к нему ленточный светильник. Этот же способ можно использовать сразу, если есть сомнения в качестве штатного клея. Например, при долгом хранении светильника.

Другой способ – использование современного клея. Например, из серии «жидкие гвозди» или какой-нибудь суперклей. Полностью смазывать поверхность полотна не стоит – достаточно одной капли на несколько сантиметров.


Жидкие гвозди для надежного монтажа LED-ленты.

К альтернативным способам крепления можно отнести подвеску ленты с помощью металлических скоб и мебельного степлера. Этот путь не может быть рекомендован, так как при выполнении сборки легко повредить проводники полотна. Этого недостатка лишен способ подвески на пластиковых хомутах, но эстетический момент в данном случае близок к нулю. Поэтому этот путь применим лишь при подвеске светильника вне помещения.


Надежная фиксация при помощи крепежных площадок и пластиковых хомутов

Ленты средней мощности

Если 1 метр светильника потребляет 10-14 Вт, ему уже понадобится небольшой теплоотвод. В его качестве может выступить двусторонний скотч на основе алюминия. Если полотно приклеить к такому клеящему основанию, то при открытой прокладке можно осуществить достаточное отведение тепла таким недорогим, несложным и довольно эстетичным способом.

Монтаж светильников высокой мощности

Если LED-лента потребляет более 16 Вт на 1 м длины, надо монтировать ее на эффективный теплоотвод. Для этой цели применить алюминиевый профиль, который специально производится для монтажа LED-лент. В продаже доступно три вида профиля:

  • накладной – удобно монтировать на поверхности или на подвесе;
  • угловой – оптимален для монтажа в углах для освещения под углом 45 градусов;
  • врезной – полностью прячется в толще паза.


Различные варианты алюминиевого профиля

Кроме технической функции, профиль играет и декоративную роль. Здесь также надо следить, чтобы не наклеить на алюминий незащищенные контактные площадки.

С балластным элементом

Подключение светодиодной ленты к сети 220 В без блока питания возможно, но нежелательно из соображений безопасности. Каждая точка цепи будет находиться под полным сетевым напряжением, поэтому все манипуляции надо производить при полном отключении ленты. Но если более безопасные варианты недоступны, можно подключить к сети через резистор, который погасит излишек напряжения. Его номинал выбирают так, чтобы при рабочем токе (определяемым мощностью светильника) на нем падала разница между напряжением сети и номинальным напряжением ленты:

Rб=(Uсети-Uном)/( Iном), где:

  • Rб – значение балластного сопротивления;
  • Uсети – сетевое напряжение;
  • Uном – номинальное напряжение ленты;
  • Iном – номинальный ток ленты, вычисляемый по формуле Руд*L /Uном.

Если задаться значениями номинального напряжения ленты 5 вольт, мощностью 1 метра полотна 10 Вт и общей длиной 5 м, можно вычислить значение Rб:

Rб=(310-5)/((10*5)/5)=305/10=30,5 Ом. Можно взять ближайший стандартный номинал 33 Ом. На первый взгляд, такое подключение намного дешевле и проще, чем с блоком питания.


Подключение ленты через гасящий резистор.

На самом деле, все не так радужно. Для начала надо посчитать мощность, рассеиваемую на балласте, как ток, умноженный на напряжение (здесь берется действующее значение напряжения 220 В):

Рб=Iном*220В = 10А*220В=2200 Вт. Найти резистор такой мощности сложно, да и габариты у него будут соответствующие. И с ростом мощности полотна расчетное сопротивление будет падать, а рассеиваемая (впустую!) мощность – расти, поэтому такой способ применим только для маломощных светильников. Эту проблему можно обойти применением в качестве балласта конденсатора вместо резистора. Его емкость рассчитывается по приведенной формуле:

С=4,45 (Uсети-Uном)/( Iном), где С – емкость в мкФ.


Применение конденсатора в качестве балласта.

Конденсатор должен быть рассчитан на напряжение не менее 400 В, а в схему надо добавить два резистора:

  • R1 – сопротивлением в несколько сот килоом для разрядки конденсатора после выключения;
  • R2 – для ограничения тока заряда в момент включения, его номинал может составлять несколько десятков Ом.

Но эта проблема не единственная:

  1. Упоминалось о вопросах с электробезопасностью при эксплуатации лент с таким подключением. Поэтому запитать таким образом можно лишь ленту в силиконовой оболочке, а места соединений должны быть тщательно изолированы. И совсем плохой идеей будет применить такое подключение во влажных помещениях (бассейнах, банях, аквариумах).

  2. Расчет верен только для определенной ленты заданной длины. При любой замене или изменении длины полотна балласт надо пересчитать заново.
  3. Напряжение в сети в нормальном режиме может отклоняться в пределах 5%, максимально допустимым считается 10%. Также точность самых распространенных резисторов составляет 10%. С учетом разброса параметров лент относительно заявленных, напряжение на ленте (и ток через светодиоды) может значительно отличаться от расчетных, даже если уточнить расчеты фактическими замерами – просто по причине колебаний напряжения сети. Итогом может стать с одной стороны снижение яркости свечения, с другой – выход светильника из строя из-за сверхтока. Эта проблема проявляется тем отчетливей, чем ниже напряжение питания ленты. При применении конденсатора проблема лишь усугубляется, потому что ряд номиналов емкостей реже, чем ряд сопротивлений, а фактическая точность ниже.
  4. При применении диммера для регулирования яркости или контроллера для управления цветом свечения RGB-лент ток через светодиоды будет изменяться, одновременно будет меняться падение напряжения на балласте, что также усугубит нестабильность падения напряжения на ленте синхронно с изменением тока. Поэтому применение устройств для регулирования интенсивности излучения исключено.

По совокупности проблем такое подключение надо применять лишь при полной невозможности использования блока питания на соответствующее напряжение.


Параллельное включение полотен с индивидуальным балластом.

Если применяется несколько отрезков полотна общей длиной более 1 метра, их надо соединять параллельно. В противном случае проводники ленты не смогут выдержать общего тока системы освещения. Еще лучше рассчитать балласт для каждого отрезка раздельно. При необходимости замены пересчету будет подлежать только заменяемое полотно. Диодный мост должен с запасом выдерживать суммарный ток всех отрезков ленты.

Как применяют светодиодные ленты

Рассмотрим, в каких помещениях и какие именно диодные ленты наиболее предпочтительно применять:

  • При освещении стеллажа, навесной полки, шкафа подходит лента SMD 3528, плотность которой составляет LED 60 шт. на 1 погонном м. Это наиболее простой вариант по умеренной стоимости. Цвет светового потока может быть выбран на основании личных вкусов.
  • В спальнях и детских комнатах как дополнительную систему освещения возможно задействовать также 3528 либо 5050. Лучше в этой ситуации подобрать мягкое белое освещение с нейтральным оттенком.
  • В большом помещении как дополнительный либо основной источник света преимущественно используют SMD 5050 и 2835. Данные разновидности при условии правильного определения нужной длины превосходно справляются со своими функциями.
  • SMD 5630 и 5730 задействуют в крупных помещениях, в частности, магазинных.
  • Чтобы осветить салон авто, используют SMD 5050 и ленты RGB, защитный класс которых — не меньше IP54.
  • Чтобы декоративно оформить либо осветить открытую беседку либо иную садовую постройку, потребуется приобретение ленты, имеющей защитную оболочку их силикона и защитный класс минимум IP65.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий