Как работает умягчение воды ионообменными смолами

2.1 Умягчение воды кипячением

Кипячение (термический метод умягчения) – процесс нагревания воды, в результате которого устраняется временная жесткость, т.е. удаляются гидрокарбонаты кальция и магния, осаждающиеся в виде белой накипи. Таким образом, вода становится более мягкой.

Соли жесткости имеют свойство терять растворимость с ростом температуры. То есть, чем температура нагревания выше, тем быстрее образуются отложения. Чем дольше продолжается процесс кипячения, тем больше солей выпадет в осадок, и тем мягче будет полученная вода.

При использовании кипячения с целью понизить жесткость воды, учитываются несколько моментов.

Необходимо определить оптимальное положение крышки на емкости. Желательно, чтобы выделяющийся в процессе углекислый газ как можно быстрее улетучивался, поэтому рекомендуется не полностью закрывать крышку емкости, где происходит кипячение. При плотно закрытой крышке свободное улетучивание углекислого газа затруднено, и следовательно выпадение солей жесткости в осадок происходит медленнее. Если же емкость полностью открыта, вода быстро испаряется, и общее количество солей растет, ухудшая тем самым вкус воды.

Следующий момент, чем больше содержится в воде солей магния и кальция, тем быстрее в процессе нагревания будет образовываться накипь. Таким образом, необходимо знать уровень жесткости очищаемой воды. Например, если жесткость воды менее 4 мг-экв/л, то умягчать ее кипячением не имеет смысла. Реакция термического осаждения в этом случае будет слишком медленной, и испарится большое количество воды. Это в свою очередь негативно повлияет на вкус воды, так как концентрация солей будет неоптимальной.

Еще один параметр влияющий на время, необходимое, чтобы выпали в осадок все соли жесткости, это площадь поверхности, на которой будет происходить осаждение, т.е. площадь стенок и дна, контактирующих с водой. Чем площадь больше, тем эффективнее будет идти процесс, и тем меньше времени он займет. Причем, эффективность будет расти также с увеличение слоя накипи на поверхности емкости.

В бытовых, домашних условиях результат этого метода можно проверить либо просто на вкус, либо с помощью специального устройства.

С целью определения точного времени, необходимого на термическое умягчение воды, применяют прибор TDS-метр, или солемер. Устройство измеряет общее количество солей в воде (в том числе учитываются соли жесткости). Таким образом, если в процессе кипячения произошло выпадение осадка, то прибор покажет меньшее количество содержания солей. Вместе с тем, можно также определить, когда термическое воздействие уже не убирает временную жесткость, а наоборот повышает общее количество солей из-за испаряющейся воды.

Рекомендуется использовать солемер с  температурным компенсатором, тогда показания прибора по содержанию солей будут корректны при разных температурах нагреваемой воды.

Лучшие 3 ионных фильтра

В продаже предлагается большое количество фильтров с ионообменным принципом действия. Однако некоторые модели заслуживают особого внимания и занимают лидирующие места в рейтингах.

К таким относится умягчитель для умягчения воды Ecosoft FU 2472CE15. Он предназначается для промышленного использования и способен обрабатывать до 11,7 м3 жидкости в час.

Среди плюсов системы выделяют отсутствие накипи и отложений в процессе работы, минимальные расходы на обслуживание, большой срок службы ионообменной смолы (до 5 лет), а также поддержку защиты от скачков напряжения. Существует множество способов смягчения воды, но обмен ионов считается наиболее востребованным.

В списке лучших фильтров находится модель BWT AQA PERLA 30. Она обладает компактными габаритами и следующими рабочими свойствами:

  1. Универсальность. Система подходит как для небольших частных домов, так и для крупных предприятий.
  2. Приятный вкус воды после обработки. Питательная влага становится мягкой и вкусной. При этом после приема душа кожа эластичная и приятно пахнет.
  3. Простота обслуживания.
  4. Наличие опции BIO.

Устройство серии Ecosoft FU 0844CE Twin разработано для бытового применения. Оно может выдавать до 1,3 м3 чистой воды за час работы, устраняя проблему образования накипи на бытовых приборах. Затраты на обслуживание системы минимальные, а заявленный срок службы превышает 5 лет. Агрегат поддерживает автоматизацию работы и не боится скачков напряжения.

Принципы и технология работы ионных умягчителей

Самый популярный химический реагент, используемый для водоподготовки ионным способом – это специальная смола. Она представляет собой твердое вещество неорганического происхождения с пористой структурой. В состав смолы входят различные функциональные добавки, которые и отвечают за протекание реакций ионного обмена. Форма выпуска – гранулы разных размеров (они являются произвольными). Если смола была получена в ходе полимеризации, она будет шаровидной, а если путем поликонденсации, то неправильной формы. При взаимодействии с водой смола набухает.

Смола в процессе замены ионов солей жесткости постепенно утрачивает первоначальный состав, рабочие характеристики в ходе эксплуатации безвозвратно изменяются. Чтобы восстановить работоспособность реагента, обычно используется раствор обычной поваренной соли, реже, но тоже может применяться лимонная кислота. Учтите, что восстановление солью не вернет смоле все первоначальные качества, поэтому со временем ионные фильтры меняют. Если все делать правильно и регулярно очищать вещество, оно прослужит вам около трех лет.

Критерии выбора

Прежде чем приступить к приобретению ионообменного фильтра, необходимо определить производительность и мощность будущей модели

Для того чтобы не ошибиться с выбором, следует обратить внимание на будущие условия эксплуатации и предполагаемую интенсивность использования прибора. Первоначально следует оценить степени жёсткости воды и определить продуктивность процесса умягчения

При незначительных превышениях норм содержания в жидкости солей и примесей нет смысла выбирать дорогую, многоёмкостную модель. В этом случае вполне подойдёт бытовой прибор небольшого размера, предназначенный для обработки мало- и среднезагрязнённой жидкости. Для очистки промышленных стоков или умягчения больших объёмов жёсткой воды следует приобретать серьёзные промышленные приборы, оборудованные системой автоматической регенерации.

Практически все модели ионообменных приборов предусматривают установку угольных фильтров, поэтому для обеспечения наиболее качественного очищения воды и доведения её до состояния питьевой, рекомендуется приобретение дополнительного угольного картриджа. При выборе прибора также следует помнить о разновидностях ионообменных процессов, а именно о возможности замены ионов магния, кальция и тяжёлых металлов как на водород, так и на натрий. От того, какой именно прибор будет использоваться для очистки, зависит кислотно-щелочной баланс отфильтрованной жидкости.

Как выглядят ионообменные смолы для очистки воды

Применение ионообменных смол в фильтрующих системах частного жилого сектора давно считается необходимым условием для получения качественной питьевой воды. Пик популярности этого способа очистки приходится на конец ХХ века.

С виду, ионообменная смола – это скопление мелких шариков (до 1 мм в диаметре), которые производят из полимерных материалов.

Тот, кто никогда не сталкивался с этим материалом, с легкостью может перепутать смолу с рыбьей икрой. Пользу и его уникальные характеристики нельзя игнорировать. Использование ионообменных смол для умягчения воды позволяет задерживать ионы примесей металлов и солей жесткости. Но такой фильтр не просто накапливает в себе все эти вещества, а заменяет ионы вредных веществ на абсолютно безопасные. Эта процедура замены ионов и закрепила существующее название фильтрующей среды (ионообменные смолы).

В химии ионообменные смолы относят к ионитам (высокомолекулярное соединение, имеющее функциональные группы, которые, в свою очередь, способны вступать в реакцию обмена с ионами какой-либо жидкости). Отдельные группы ионитов способны также вступать в окислительные реакции, процессы восстановления и физической сорбции.

Статьи, рекомендуемые к прочтению:

По своей структуре ионообменные смолы бывают пористыми, гелевыми или промежуточными.

Смолы с гелевой структурой не содержат пор. Обмен ионами в такой структуре возможен лишь в тот момент, когда смола набухает и становится похожей (по консистенции) на гель.

Пористая структура получила свое название благодаря огромному количеству пор на поверхности смолы. Эти поры как раз и позволяют произвести ионный обмен.

В промежуточной структуре ионообменных смол соединены свойства как пористой, так и гелевой структуры.

Все эти разновидности смол имеют принципиальные различия. У гелевых – наибольшая обменная емкость, тогда как смолы с пористой структурой обладают высокой стойкостью к химическим и термическим воздействиям. Такая стойкость позволяет смолам с пористой структурой поглощать больше примесей независимо от температуры воды.

Кроме этого, ионообменные смолы для очистки воды разделяют по заряду ионов. При обмене катионов (положительно заряженных ионов) смолу называют катионитом. В случае обмена анионами (отрицательно заряженными ионами) – анионитами. На практике суть различия по этому признаку сводится к способности обмена ионов в водной среде с разным уровнем pH. У анионитов «рабочей» считается среда с рН от 1 до 6, в то время как у катионитов процессы протекают в среде с рН от 7 и более. Конечно же, пользователям необязательно разбираться в таких тонкостях работы фильтров. В выборе необходимого типа фильтрующего устройства вам должны помогать специалисты в этой области.

В большинстве случаев ионообменная смола, находящаяся в фильтрующих системах, содержит большое количество ионов солей хлора или натрия. В некоторых случаях такая смола состоит из смеси солей с другими элементами (натрий-водород, гидроксил-хлорид и др.).

В зависимости от параметров, ионообменные смолы для умягчения воды могут отличаться друг от друга. Одним из таких показателей является влажность. Оптимально, когда влажность сведена к минимуму. Поэтому производители стараются извлечь влагу из смолы еще до момента ее упаковки. Для этого используют специальные центрифуги.

Ионообменные смолы оценивают также по уровню их емкости. Эта характеристика показывает, сколько ионов в исходной среде приходится на единицу массы (объема смолы). Сравнивая смолы по этому признаку, выделяют три вида емкости: рабочую, объемную и весовую. Объемная, как и весовая, являются стандартными величинами, то есть их параметры определяют в лаборатории, а полученные данные записывают в характеристики готовых продуктов.

В отличие от двух предыдущих, рабочая емкость не подлежит измерениям, поскольку имеет много условностей (степень чистоты воды, толщина слоя смолы, сила потока воды и др.). Со временем ионы рабочей среды полностью заменяются ионами примесей, содержащихся в воде. В таком случае рабочая емкость подлежит восстановлению.

Читайте материал по теме: Обессоливание воды

Принцип действия

Одним из самых эффективных способов смягчения воды является метод ионного обмена. Способ применим в том случае, когда показатель минерализации достигает 100 мг солей на литр жидкости. Наиболее эффективными считаются фильтры с использованием водородных смол. Тяжёлые металлы и радиоактивные вещества, проходя через такой фильтр, захватываются и заменяются на безопасный водород. Благодаря ионному обмену вода освобождается от излишнего количества солей кальция и магния и приобретает слабокислую реакцию. В то время как в натриевых фильтрах происходит обмен ионов металла на ионы натрия, что ведёт к переизбытку солей и возникновению щелочных реакций. В результате такой очистки происходит изменение кислотно-щелочного баланса воды, приводящее, в свою очередь, к нарушению обменных процессов в организме. Однако сами соли не представляют вреда для человека и не образуют накипь на электронагревательных элементах чайников, бойлеров и стиральных машин.

Ионообменные смолы являются неорганическим веществом, содержащим множество пор и выпускающихся в гранулированном виде. Смола нуждается в периодической очистке, регулярность которой зависит от показателя загрязнённости пропускаемой воды и от интенсивности эксплуатации прибора. Для очистки смоляного картриджа используется поваренная соль и лимонная кислота. Срок службы смолы при условии регулярного восстановления составляет не менее трёх лет. Ионообменный фильтр является лучшим способом смягчения воды и применяется для её очистки от ионов стронция, хрома и тяжёлых металлов, для получения деионизированной воды и для очистки стоков. Перед употреблением внутрь смягчённую и очищенную жидкость рекомендуется дополнительно пропускать через угольный фильтр.

Свойства ионообменных смол

Ионообменные смолы (катиониты и аниониты) – это нерастворимые в воде высокомолекулярные полимерные органические соединения с кислотными или основными свойствами, чаще в виде сферических гранул, которые позволяют удалять из воды ионы кальция, магния и многих других металлов, а также других ионов, заменяя их в основном на ионы натрия Na+ или водорода H+, а также заменять кислотные остатки на ион хлора Cl– или ион гидроксила OH–.

Ионообменные смолы подразделяют на гетеропористые, макропористые и изопористые. Гетеропористые материалы характеризуются гетерогенным характером гелевидной структуры и небольшими размерами пор. Макропористые имеют губчатую структуру и поры свыше молекулярного размера. Изопористые – однородной структуры и полностью состоят из смолы, поэтому их обменная способность выше, чем у предыдущих смол.

Для специальных целей иониты выпускают в виде порошков, волокон, нитей, нетканых материалов, мембран и др.

В зависимости от содержащейся функциональной группы катиониты делятся на сильнокислотные, среднекислотные и слабокислотные. Сильнокислотные катиониты обменивают катионы в щелочной, нейтральной и кислой средах, для слабокислотных требуется только щелочная среда.

Мелкозернистый катионит, обладая более развитой поверхностью, имеет несколько большую обменную емкость, чем крупнозернистый. Однако с уменьшением зерен катионита гидравлическое сопротивление и расход электроэнергии на фильтрование воды увеличиваются. Оптимальные размеры зерен катионита, исходя из этих соображений, принимают в пределах 0,3…1,5 мм. Рекомендуется применять катиониты с коэффициентом неоднородности Кн не больше 2. Иониты, применяемые в развитых странах, характеризуются Кн близким к единице.

В воде все иониты набухают, увеличиваясь в объёме. Отношение объёмов одинаковых масс ионообменных смол в набухшем состоянии и в воздушно-сухом называется коэффициентом набухания. Его необходимо учитывать при первом наполнении сосуда фильтра ионообменной загрузкой и затем водой.

Катионит бывает в различных катионных формах. В основном, это натрий-форма (Na-форма) и водородная форма (Н-форма). В зависимости от этого катионит меняет удаляемые из воды ионы либо на натрий-ион, либо на водород-ион. Для удаления из воды катионов Са2+, Mg2+ в основном применяют класс полимерных смол различных катионитов с необходимыми свойствами для определённого процесса, а также их упорядоченные по высоте смеси. Катиониты в Н-форме используются для обессоливания воды и специальной водоподготовки.

После насыщения емкости катионита ионами кальция и магния, необходимо проводить его регенерацию, например, поваренной солью. Во время этого процесса идёт замена катионов солей жесткости на ионы Na+. После чего материал опять способен умягчать воду.

Также существует класс ионообменных полимерных соединений, которые, являясь основаниями, позволяют удалять из воды анионы кислот, заменяя их на анионы Cl– или ОН–. Они подразделяются на сильно-, средне- и слабоосновные аниониты. Для регенерации их подвергают действию щёлочи или соли соляной кислоты.

Нашли применение и так называемые амфотерные иониты или полиамфолиты. В разных ситуациях они могут вести себя как катиониты или как аниониты. Для регенерации амфотерных ионитов их промывают водой.

2 Необходимое для работы оборудование

Технические особенности оборудования, как и его цена, зависят в первую очередь от сферы его применения: фильтры для сточных вод могут иметь огромные размеры, в то время как устройства для бытового использования обладают достаточно компактными габаритами.

Что касается цен, то минимальная стоимость устройства для домашней водоподготовки составляет, по меньшей мере 300 долларов.

На сегодняшний день все фильтры для ионного умягчения выпускаются в двух основных форм-факторах:

  • Небольшие стационарные фильтры со сменным картриджем;
  • Ионообменные колонны – крупногабаритные подключающиеся к водопроводу устройства, которые, в основном, обладают автоматизированным процессом восстановления смолы.

Бытовая система ионного обмена с несколькими баллонами и насосом.

Фильтры колонного типа имеют следующую комплектацию:

  • Рабочая емкость – выполненная в форме герметичного бака, либо баллона, который заполнен ионообменной смолой;
  • Клапан с электронным процессором, который управляет подачей воды;
  • Емкость для восстановительного материала – в основном имеет форму бака, в который засыпается соль.

Работа таких устройств для умягчения полностью автоматизирована: процессор подает в колонну воду, которая, попадая в ионообменную среду, отдает смоле ионы солей жесткости, после чего вода, уже очищенная, сквозь выводящий шланг подается к водопотребляющим устройствам.

Когда ионообменная смола истощается и требуется её восстановление, устройство выполняет подачу небольшого количества жидкости в бак для реагентов, которая после насыщения соляным раствором возвращается обратно к смоле. Циркуляция происходит до тех пор, пока система не будет полностью восстановлена.

В целом, колонны для водоподготовки бытового применения и промышленные устройства для фильтрации сточных вод, отличаются друг от друга лишь размерами рабочей емкости и видом используемых реагентов.

2.1 Восстановление ионной смолы в картридже

В фильтрах с картриджами восстановление смолы выполняется собственноручно, делается это следующим образом:

  1. Перекрывается подача воды в фильтр и сбрасывается внутреннее давление.
  2. Извлекаем картридж со смолой.
  3. Очищаем его от загрязнений, промывая под струей проточной воды.
  4. Если картридж разбирается, то смола высыпается в отдельную посудину и покрывается соляным раствором, если нет – то опускаем в него картридж целиком. Соляной раствор изготавливаем из расчета 100 грамм соли на 1 литр воды. Нам понадобится примерно 2-4 литра жидкости.
  5. Оставляем смолу в растворе на 6-8 часов, после чего сливаем его и промываем смолу чистой, предварительно отфильтрованной, водой 2-3 раза.
  6. Выполняется установка картриджа в исходное положение.
  7. В первых литрах пропущенной через фильтр воды, после восстановления смолы, вы можете почувствовать легкий привкус соли – это нормально, в течении получаса он исчезнет.

Простейший способ подключения системы водоподготовки и ионного обмена.

Эффективность работы ионообменных фильтров будет максимальной при соблюдении определенных правил по качеству подающейся воды:

  1. Жидкость не должна быть зараженной микробами.
  2. Запрещается умягчать воду с высоким содержанием активного хлора и сероводорода.
  3. Оптимальная температура обрабатываемой воды: 5-40 градусов по Цельсию.
  4. Давление потока: 2-7 кгс\см2.
  5. Концентрация механических загрязнений не должна превышать 1 мг\л.

При очистке сточных вод используются более агрессивные химические реагенты способные работать с практически любой водой, поэтому какие-либо жесткие ограничения в этом случае водоподготовки отсутствуют.

Для обработки сточных вод это не имеет значения, так как после первичной очистки их еще будут несколько раз прогонять через обогатители и другие подобные установки, а потому конечное качество жидкости будет меняться.

Описание процесса умягчения воды

Удаление из воды кальция и магния можно описать уравнением:

Ме(HCO3)2 + 2NaR⇌МеR2 + 2NaHCO3.

Регенерация поваренной солью происходит следующим образом:

МеR2 + 2NaCl ⇌2 NaR+ МеCl2,

где R – обозначение радикала смолы (Ме-катиона двухвалентного металла).

Для ускорения процесса регенерации накопленных ионов кальция и магния, в систему направляют водный раствор поваренной соли (5–8% NaCl) со значительным превышением сверх необходимого стехиометрического её количества. В целях уменьшения удельного расхода соли при регенерации иногда практикуют первую половину расходного количества соли пропускать в виде 2 – 3%-го раствора, а вторую половину – в виде 6 – 7%-го раствора.

Скорости прохождения регенерирующих растворов обычно выдерживают на уровне 7 – 10 м/ч.

Расход поваренной соли Р для регенерации промышленных Na-катионитных фильтров на умягчение 1 м3 воды (г/м3) в расчете на 100% хлористый натрий определяют по нескольким формулам. Для одноступенчатого Na-катионирования или для фильтров 1 ступени:

Р11об – Жост).

Для Na-катионитных фильтров 2 ступени:

Р22ост – Жнорм).

Для H-, Na-катионитных фильтров:

Р3=180 (Жоб – Щ + а),

где У1, У2 – удельные расходы поваренной соли (г/г-экв), соответственно, выбирают по таблице в зависимости от применяемой технологии умягчения воды и регенерации катионита. Для одноступенчатого прямоточного процесса – 118 г/г-экв, второй ступени – 350 г/г-экв. Для прямоточного умягчения конденсатов – 350 г/г-экв. При одноступенчатом натрий-катионировании и ступенчато-противоположной системе регенерации 88 г/г-экв и противоточной технологии 90–150 г/г-экв; Жоб – среднегодовая общая жесткость исходной воды перед Na-катионитным фильтром 1-ой ступени, мг-экв/дм3; Жост – средняя за фильтроцикл остаточная жесткость воды, после первой ступени Na-катионирования, мг-экв/дм3; Жнорм – нормируемая жесткость умягченной воды, мг-экв/дм3; Щ – карбонатная щелочность исходной воды, мг-экв/дм3; а – заданная щелочность фильтрата, мг-экв/дм3.

Для эффективного взрыхления ионитов перед регенерацией необходимо предусмотреть свободное пространство в фильтре, достаточное для расширения слоя катионитов на 50–75%, слоя анионитов – на 80–100%. При этом иониты макропористой структуры требуют большей высоты расширения слоя в сравнении с ионитами гелевой структуры. В связи с этим начальная скорость потока взрыхляющей воды не должна превышать 5–7 м/ч.

Концентрированные водные растворы хлоридов СаСl2, МgСl2 и избыток раствора соли NаСl, оставшейся неиспользованной, затем удаляют промывочной водой из фильтра в дренаж.

При пропускании регенерационного раствора сверху-вниз, в нём нарастает концентрация вытесняемых и уменьшается концентрация регенерирующих ионов. Увеличение концентрации противоионов (при умягчении это Са2+, Mg2+), в регенерационном растворе NаСl подавляет и ослабляет замещение Са2+, Mg2+ в смоле на Nа+. Иначе говоря, это так называемый противоионный эффект тормозит реакцию регенерации. В итоге в нижних слоях катионита некоторое количество катионов жёсткости остаются незамещёнными Nа+. Для устранения этого явления можно продлить время регенерации, но это увеличивает удельный расход соли и повышает стоимость обработки воды. Поэтому ограничиваются однократным пропусканием раствора соли при жёсткости умягчённой воды до 0,20 мг-экв/дм3 или двукратным при жёсткости ниже 0,05 мг-экв/дм3.

Для каждого вида ионообменных смол есть свой предел, которого он может достигнуть, после чего фильтрующий слой перестаёт работать по назначению. Возможны два варианта того, что следует делать со смолой, использовавшей свою ионообменную емкость.

В том случае, когда порция смолы использовалась в виде сменного картриджа, что практикуется в ряде бытовых устройств, его просто заменяют на новый. Подобные устройства целесообразно применять для получения небольших объёмов очищенной воды, например, для разового приготовления пищи.

Недостатком подобных устройств является почти полная неизвестность того момента, когда картридж исчерпал свои умягчительные свойства. Поэтому или картридж меняют, хотя он ещё работоспособен, или употребляют не умягчённую воду.

В бытовых водоумягчительных устройствах с большим объемом загрузки ионообменными смолами применяется регенерация насыщенным раствором таблетированной поваренной соли из бака, который или расположен отдельно (колонная система, рис. 1), или является частью относительно компактной установки (кабинетная система, рис. 2).

Рис. 1. Колонная система водоумягчения

Рис. 2. Кабинетная система водоумягчеиня

Плюсы и минусы очистителей

Достоинства ионообменных фильтров таковы:

  1. Бесшумная работа. Это очень комфортный вариант для домашнего применения.
  2. Высокий уровень очищения воды из стока и из водопровода. Приборы эффективно устраняют тяжёлые металлы и радиоактивные элементы, а также блокируют бактерии, пестициды, элементы нефтяной продукции, ядовитые смеси.
  3. Лёгкость обслуживания и доступность картриджей. Их просто менять самостоятельно, не обращаясь к специалистам.
  4. Удержание минерального состава воды и её наполнение ионами с отрицательным зарядом. В результате чего преобразуются органические соли. А их организм усваивает намного легче.

Недостатки:

  1. Необходимо постоянно обновлять их наполнитель.
  2. Строгое следование критериям утилизации использованных смол.
  3. Некоторые модели довольно медленно очищают воду. Хотя это больше присуще старым приборам. В современных модификациях есть специальные ускорители процесса – катализатора обмена.
  4. Стоимость.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий