Устройство
Конструкция люминесцентной лампы состоит из:
- прозрачной вытянутой трубки;
- двух цоколей с двумя электродами;
- стартер, начинающий работать от розжига;
- электромагнитный дроссель;
- конденсатор от сети.
Колба лампочки производится из кварцевого стекла. В начале работы на производстве из колбы выкачивают воздух и создают вакуумную среду, а потом она наполняется смесью инертного газа с добавлением ртути. Последняя должна быть в газообразном состоянии, потому что внутри высокое давление.
Превращение в световой луч
Поверхность колбы изнутри покрывается фосфоресцирующим веществом, оно перерабатывает энергию ультрафиолетового света в видимый человеческому глазу луч.
К концам электродов лампочки подсоединяется переменное напряжение сети. Нити из вольфрама покрываются тяжелым металлом, который во время работы испускает электроны. В основном используются цезий, барий, талий. Дроссель похож на катушку, у которой высокая величина магнитной проницаемости.
Электрод
Наружной частью электрод спаивается с цоколем. Из сосуда начинают обильное откачивание всего воздуха с помощью штенгеля, который находится в одной из ножек c электродами. Далее начинается наполнение вакуумной среды инертными газами c добавками ртути.
На определенные виды электродов обязательно напыляют активирующее вещество, например оксид бария, талия или кальция.
Стандартный цоколь
Атом ртути
В люминесцентную лампу добавляют немного ртути, которая превращается в пар во время розжига разряда, и некоторую часть аргона, которая помогает повышению срока эксплуатации изделия и улучшению условий для оживления атомов ртути.
При включении устройства к сети подается электрический разряд, оживляющий работу паров ртути. Тонкая пленка люминофора активизируется под воздействием света паров ртути.
Стеклянная трубка
Трубка из стекла может иметь различный диаметр. Сила светового потока может быть разной, это зависит от мощности люминесцентной лампы. Для ее правильной работы необходим стартер дроссельного вида.
Внимание! Температура в трубке не должна быть свыше 55 градусов. Поэтому данную лампу нельзя применять в промышленных горячих цехах. Классическая электросхема
Классическая электросхема
Люминофор
Самой главной частью люминесцентного устройства будет слой люминофора. КПД люминофоров— соотношение величины излучаемых квантов к величине, поглощённых по большей степени, зависит от качества сырья, используемого при производстве люминофора.
Схемы включения люминесцентных ламп
Наиболее распространенные схемы включения люминесцентных конструкций:
- схема подключения с использованием электромагнитного балласта;
- схема включения люминесцентных приборов освещения с применением электронного балласта.
Теперь давайте рассмотрим обе схемы более подробно.
Схема подключения люминесцентной лампы посредством электромагнитного балласта (ЭмПРА)
Сокращение ЭмПРА означает электронный пускорегулирующий аппарат, который еще известен как балласт либо же его называют дросселем.
Мощность ЭмПРА обязана соответствовать суммарной мощности ламп, которые подключены к нему. Данная стартерная схема достаточно старая и активно используется уже далеко не первое десятилетие. Стартером в этой схеме называют небольшую лампу, оснащенную неоновым наполнением, также в нее входят два биметаллических электрода.
Принцип включения люминесцентной конструкции согласно этой схеме следующий:
- во время включения электропитания в стартере происходит разряд;
- биметаллические электроды замыкаются накоротко;
- ток в цепи стартера и электродов сводится только к внутреннему сопротивлению дросселя, что повышает рабочий ток почти втрое и разогревает ламповые электроды буквально за мгновение;
- в это же время биметаллические контакты остывают и размыкается цепь;
- в момент разрыва цепи дроссель создает запускающий импульс до 1 кВт, что происходит благодаря его самоиндукции;
- происходит разряд в газовой среде прибора и он включается.
Помните, что стартеры на 127 Вольт не смогут работать в одноламповой системе и для нее потребуется стартер на 220 Вольт.
ЭмПРА, используемое при данной схеме, имеет свои преимущества:
- удобство конструкции;
- относительная надежность;
- доступная цена.
Однако такой балласт имеет и свои недостатки, в числе которых следующие:
- расход электроэнергии выше более чем на 15 процентов по сравнению со схемой подключения на основании электронного балласта;
- время запуска зависит от износа конструкции и колеблется до 3 секунд;
- со временем усиливается звук от гудения дроссельных пластин;
- часто возникает стробоскопический эффект мерцания люминесцентной лампы, что негативно может сказаться на зрении человека;
- система дает сбои при низких температурах. Так, ничего не будет работать в сильные холода в неотапливаемых помещениях при включении посредством данной схемы.
Схема подключения люминесцентной лампы при помощи электронного балласта (ЭПРА)?
ЭПРА расшифровывается как электронный пускорегулирующий аппарат (он же балласт). В отличие от электромагнитного балласта он подает на лампу напряжение не сетевой частоты, а высокочастотное (25-133 кГц). Такая схема исключает появление мигания, которое так часто нас раздражает и негативно влияет на зрение. В данном аппарате применена автогенераторная схема, которая включает трансформатор и выходной каскад с транзисторами.
Схемы подключения люминесцентных ламп при помощи электронного балласта есть разные, чаще всего они нанесены на блок конструкции и подключить их тем или иным способом не составляет труда.
Схемы с применением электронного пускорегулирующего балласта тоже имеют свои преимущества и недостатки.
Преимущества их такие:
- специальный режим работы и запуска ЭПРА позволяет увеличить срок эксплуатации люминесцентной лампы;
- до 20 процентов экономии электроэнергии по сравнению с электромагнитным балластом;
- отсутствие шумов и мерцаний при работе лампы;
- отсутствие часто ломающегося стартера;
- наличие моделей, где есть возможность диммирования (регулировки яркости света).
Недостатков у данного балласта не так уж и много и они не слишком существенны:
- сложная схема подключения;
- высокие требования к качеству комплектующих и их установке.
Люминесцентные осветительные конструкции привыкли покупать те люди, которые хотят оптимизировать потребление электричества дома и на работе, а также желают сократить траты на приобретение новых осветительных приборов, приходящих со временем в негодность. Благодаря балластам, люминесцентные конструкции работают корректно. Естественно, больше преимуществ у схем включения люминесцентных ламп при помощи современного электронного балласта ЭПРА.
Как проверить исправность
Принцип проверки ограничителя достаточно прост. Все, что нужно сделать, это достать его из люминесцентной лампы и проверить сопротивление дросселя при помощи тестера либо мультиметра.У ограничителя, находящегося в исправном состоянии, сопротивление на тестере покажет определенное постоянное значение. Если ограничитель все же неисправен, то тестер покажет значение, которое будет значительно отличаться от нормальных показателей, выходить за норму.Таким образом, сбой в работе дросселя может быть обусловлен обрывом либо перегоранием окантовки, а также может произойти ввиду того, что нарушена изоляция между витками провода.
Причиной сбоя может служить обрыв либо перегорание окантовки, если значение напряжения на тестере будет бесконечно высоким. О перегорании также свидетельствует неприятный запах, который особенно ощутим во время включенной лампы.Если же значение напряжение на тестере слишком низкое, то в данном случае подозрение о нарушении изоляции провода полностью находит свое подтверждение.
Как подключить лампу
Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.
Подключение с использованием электромагнитного балласта
Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.
Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.
Подключение при помощи ЭмПРА.
Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:
- значительный расход электроэнергии;
- длительный запуск, который может занимать 3 с;
- схема не способна функционировать в условиях пониженных температур;
- нежелательное стробоскопическое мигание, негативно влияющее на зрение;
- дроссельные пластинки по мере износа могут издавать гудение.
Две трубки и два дросселя
В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.
Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.
Схема с двумя трубками и двумя дросселями.
От стартера контакт идет к лампе, а свободный полюс – к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.
Схема подключения двух ламп от одного дросселя
Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.
Схема подключения двух светильников от одного дросселя.
Электронный балласт
Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.
Поступающий на нагрузку ток выпрямляется через диодный мост. При этом напряжение сглаживается, а конденсаторы гарантируют стабильную подачу электроэнергии.
Подключение с помощью электронного балласта.
Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.
Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.
Использование умножителей напряжения
Использование умножителей напряжения.
Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.
Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для его стабилизации используются конденсаторы.
Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость
Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.
Подключение без стартера
Схема подключения без стартера.
Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.
Дроссели и их назначение при использовании люминесцентных ламп
Дроссель — деталь, служащая для регулировки силы тока. Эта деталь разделяет или ограничивает электросигналы различной частоты и устраняет пульсацию постоянного тока.
Для чего и зачем нужен в устройствах дневного света
Люминесцентные лампы (дневного света) как один из видов разрядных ламп, невозможно подключить для освещения таким же образом, как и обычную нагревательную электролампу. Для их подключения необходимо использовать дополнительный пускорегулирующий аппарат.
Дроссель включается методом последовательного соединения с лампой дневного света и предназначается для ограничения тока, который протекает через ее электроды. Это устройство характеризуется наличием реактивного сопротивления, а также отсутствием излишнего тепловыделения. Дроссель может ограничить ток и организовать предотвращение его лавинообразного нарастания при включении в сеть.
Дроссель — неотъемлемая составная часть любой стартерной системы включения. Помимо этого, он способен исполнять следующие дополнительные функции:
- создание безопасного тока для конкретной лампы, при котором возможно обеспечение разогрева ее электродов при разжигании;
- образование импульса повышенного напряжения, способствующего возникновению разряда в колбе лампы;
- обеспечение стабилизации электрического разряда;
- способствование бесперебойной работы лампы при отклонениях напряжения в электрической сети.
Технические характеристики
Основными техническими характеристиками рассматриваемой детали являются коэффициент потери мощности и индуктивность. Для обозначения этого коэффициента на устройстве указываются параметры тока, мощности и емкости конденсатора.
Индуктивностью называется индуктивное сопротивление, которое представляет возможным регулировать мощность электричества, поступающего на ламповые контакты.
Виды
Дроссели делятся на те же виды, что и подключаемые к ним лампы. Если подключить лампу к дросселю, который не соответствует ее характеристикам, то это, вероятнее всего, приведет к поломке какого-либо из элементов, используемых в системе подключения. Существуют следующие виды дросселей, подразделяемых в зависимости от мощности:
- дроссель мощностью в 9 Вт — для энергосберегающих ламп;
- 11 Вт — для миниатюрных светильников;
- 15 Вт — для настольных светильников;
- 18 Вт — для офисных ламп;
- 36 Вт — для малых люминесцентных ламп;
- 58 Вт — для потолочных светильников;
- 65 Вт — для многоламповых потолочных светильников;
- 80 Вт — для большых люминесцентных ламп.
Устройство
Типичная схема подключения дросселя газоразрядного типа представлена на рисунке ниже.
Условные обозначения:
- EL — лампа;
- SF — стартер;
- LL — дроссель;
- 1, 2 — спирали лампы;
- C — конденсатор.
Отчего может греться
Дроссели чаще всего изготавливают из двух металлических материалов — алюминия и меди. Алюминиевые устройства обладают одним существенным недостатком — сильным нагреванием. В свою очередь, медные греются меньше из-за меньшего сопротивления в электрической цепи, и поэтому они являются гораздо более долговечными.
При использовании ламп дневного света дроссель должен постоянно поддерживать свою рабочую температуру. Для снижения температуры достаточно использовать простой компьютерный кулер. Однако, существует возможность выбрать и другой путь, заключающийся в покупке более дорогой системы охлаждения, например, водяной.
Помимо самой работы дросселя, он также способен перегреваться из-за короткозамкнутых витков. При такой проблеме помочь может только полная замена устройства. При замене рекомендуется выбрать детали из меди, основываясь на том, что они менее подвержены перегреву.
Практика показывает, что дроссели являются весьма долговечными устройствами при правильной их эксплуатации. А также нельзя не отметить тот факт, что дроссель способен погашать броски напряжения, даже очень сильные. Поэтому, если вы правильно подберете дроссель к своей люминесцентной лампе, то эта лампа может прослужить вам годами, и даже десятилетиями.
15,00
Преимущества и недостатки
Главным плюсом люминесцентных устройств будет высокая светоотдача и отличный уровень КПД. Они дают помещению хорошую яркость, которая не портит глаза, и исправно работают спустя долгие часы.
Различные цветовые температуры, похожие по оттенку на дневной свет, помогают выбрать необходимый светильник под разнообразные задачи и для помещений любого предназначения.
Свет от таких ламп будет рассеянным. Мягкое, приятное для глаз сияние испускается не только от нити из вольфрама, но и от всего сосуда лампочки сразу.
Это позволяет применять люминесцентное освещение не только для подсветки, но и для зонирования помещения.
Срок службы люминесцентных устройств будет в диапазоне от 10000 до 20 000 часов либо до 4 лет.
Освещение для растений
Главным большим недостатком лампочек будет высокая чувствительность к температурным скачкам. Уже при температуре −15 градусов изделие будет плохо работать. При высокой жаре лампочки перестают включаться и могут сильно перегреться.
Схема подключения люминесцентных ламп без стартера
Питание от В без дросселя и стартера Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают.
Для работы больше никаких устройств не надо.
Следующая схема позволяет запустить лампу дневного света с перегоревшими пусковыми спиралями мощностью до 40 Вт при использовании лампы меньшей мощности дроссель L1 придется заменить на соответствующий используемой лампе. Это можно заметить по наличию темных пятен люминофора с одной из сторон колбы. На вход подают электропитание.
Индуктивности дросселя должно хватать на оба источника света. Как видно из рисунка ниже, кроме дросселя и стартера в схеме присутствует обычный диоднй мост. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.
Читайте дополнительно: Сроки измерения сопротивления заземляющих устройств
Принцип работы газоразрядных люминесцентных ламп
Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска. Для работы больше никаких устройств не надо. При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.
Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Схема подключения люминесцентных ламп с дросселем
Во всех используется принцип создания высокого напряжения запуска при помощи умножителя напряжения. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Как только контакты соединились, ток в цепи мгновенно вырастает в раза.
В схеме, приведенной ниже, роль токоограничивающего дросселя выполняет обычная лампа накаливания, мощность которой равна мощности используемой ЛДС. Правильно собранная схема при исправных элементах начинает работать сразу же. Схема ее подключения есть справа. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне. Проверка стартера люминесцентной лампы
Подключение через современный электронный балласт
Подключение источника света с электронным балластом
Особенности схемы
Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.
В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.
Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.
При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с диммерами – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.
По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.
Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.
Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.
При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.
Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:
- высокую экономичность эксплуатации;
- бережный прогрев электродов осветительного прибора;
- плавное включение лампочки;
- отсутствие мерцания;
- возможность использования в условиях низких температур;
- самостоятельную адаптацию под характеристики светильника;
- высокую надежность;
- небольшой вес и компактные размеры;
- увеличение срока эксплуатации осветительных приборов.
Недостатков всего 2:
- усложненная схема подключения;
- более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.
Взрывозащищенные люминесцентные светильники серии EXEL-V из нержавеющей стали
Для чего нужен стартер и дроссель в схемах включения люминесцентных ламп
Основными элементами схемы включения люминесцентной лампы с электромагнитным ПРА являются дроссель и стартер. Стартер это миниатюрная неоновая лампа, один или оба электрода которой выполнены из биметалла. При возникновении тлеющего разряда внутри стартера биметаллический электрод нагревается и, затем изгибаясь, накоротко смыкается со вторым электродом.
После подачи напряжения на схему ток через люминесцентную лампу не течет, так как газовый промежуток внутри лампы это изолятор, и для пробоя его нужно напряжение, превышающее напряжение питающей сети. Поэтому загорается только лампочка стартера, напряжение зажигания которой ниже сетевого. Ток величиной 20 – 50 мА течет по дросселю, электродам люминесцентной лампы, неоновой лампе стартера.
Стартер состоит стеклянного баллона, наполненного инертным газом. В баллон впаяны металлический неподвижный и биметаллический электроды, имеющие выводы, проходящие через цоколи. Баллон заключен в металлический или пластмассовый корпус с отверстием в верхней части.
Схема устройства стартера тлеющего разряда: 1 — выводы, 2 – металлический подвижный электрод, 3 — стеклянный баллон, 4 — биметаллический электрод, 6 — цоколь
Стартеры для включения люминесцентных ламп в сеть выпускаются на напряжение 110 и 220 В.
Под воздействием тока электроды стартера разогреваются и замыкаются. После замыкания по цепи течет ток, превышающий в 1,5 раза номинальный ток лампы. Величина этого тока ограничена в основном сопротивлением дросселя, так как электроды стартера замкнуты, а электроды ламп имеют незначительное сопротивление.
Элементы схемы с дросселем и стартером: 1 – зажимы сетевого напряжения; 2 – дроссель; 3, 5 – катоды лампы, 4 – трубка, 6, 7 – электроды стартера, 8 – стартер.
За 1 – 2 с электроды лампы разогреваются до 800 – 900 °С, вследствие этого увеличивается электронная эмиссия и облегчается пробой газового промежутка. Электроды стартера остывают, так как разряда в нем нет.
При остывании стартера электроды возвращаются в исходное состояние и разрывают цепь. В момент разрыва цепи стартером возникает э. д. с. самоиндукции в дросселе, величина которой пропорциональна индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700 – 1000 В) импульсом прикладывается к лампе, подготовленной к зажиганию (электроды разогреты). Происходит пробой, и лампа начинает светиться.
К стартеру, который включен параллельно лампе, прикладывается приблизительно половина напряжения сети. Этой величины недостаточно для пробоя неоновой лампочки, поэтому она больше не зажигается. Весь период зажигания длится меньше 10 с.
Рассмотрение процесса зажигания лампы позволяет уточнить назначение основных элементов схемы.
Стартер выполняет две важные функции:
1) замыкает накоротко цепь для того, чтобы повышенным током разогреть электроды лампы и облегчить зажигание,
2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения, обеспечивающего пробой газового промежутка.
Дроссель выполняет три функции:
1) ограничивает ток при замыкании электродов стартера,
2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера,
3) стабилизирует горение дугового разряда после зажигания.
Схема импульсного зажигания люминесцентной лампы в работе:
Как подключить лампу
Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.
Подключение с использованием электромагнитного балласта
Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.
Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.
Подключение при помощи ЭмПРА.
Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:
- значительный расход электроэнергии;
- длительный запуск, который может занимать 3 с;
- схема не способна функционировать в условиях пониженных температур;
- нежелательное стробоскопическое мигание, негативно влияющее на зрение;
- дроссельные пластинки по мере износа могут издавать гудение.
Две трубки и два дросселя
В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.
Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.
Схема с двумя трубками и двумя дросселями.
От стартера контакт идет к лампе, а свободный полюс – к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.
Схема подключения двух ламп от одного дросселя
Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.
Схема подключения двух светильников от одного дросселя.
Электронный балласт
Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.
Поступающий на нагрузку ток выпрямляется через диодный мост. При этом напряжение сглаживается, а конденсаторы гарантируют стабильную подачу электроэнергии.
Подключение с помощью электронного балласта.
Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.
Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.
Использование умножителей напряжения
Использование умножителей напряжения.
Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.
Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для его стабилизации используются конденсаторы.
Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость. Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу
Можно установить переключатель, чтобы не разбирать прибор
Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.
Подключение без стартера
Схема подключения без стартера.
Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.
Основные выводы
При поиске ответа на вопрос, как подключить лампу дневного света самостоятельно, следует учесть, что самый простой вариант – купить ЭПРА. Сборка требует всего лишь подсоединить несколько проводов, предварительно отключив в квартире электропитание.
Запустить люминесцентную лампу без дросселя-клапана и стартера возможно несколькими способами, но это временный выход из ситуации. Эти решения далеки от идеальных, их нельзя использовать в жилых и рабочих помещениях из-за высокого коэффициента мерцания. Такой светильник можно повесить только в коридоре или кладовке.
Люминесцентные светильники и схемы для их соединения с сетью постоянно совершенствуются
Важно следить за новинками, правильно подбирать и использовать эти приборы
Предыдущая
Лампы и светильникиВсе об автомобильных лампах H1
Следующая
Лампы и светильникиКак сделать плавное включение лампы накаливания